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1. Introduction 

Numerical approaches in atmospheric and 
oceanic modeling inevitably introduce diffusion 
(or dissipation) and dispersion into the 
approximate solution. From a physical point of 
view, advection of a passive tracer is the simple 
transition of a quantity. Therefore, dispersion, 
the propagation of different spatial scales at 
different phase speed, and diffusion are 
processes that are aliens to the process that is 
being modeled (Chu and Fan 1998, 1999). As 
applied to constituent advection problem, these 
numerical artifacts manifest themselves as 
nonphysical mixing by numerical diffusion, 
nonphysical highs and lows in the constituent 
field caused by dispersion, and nonphysical 
tracer spectra caused by the trapping of tracer in 
nonpropagating small spatial scales (Rood 1987).  
The less the numerical diffusion and dispersion 
errors, the better the model performance is.  
      Propagation of a Rossby soliton on an 
equatorial beta-plane is treated as an asymptotic 
solution, which exists to the inviscid, nonlinear 
shallow water equations. In principle, the soliton 
propagates to the west at fixed phase speed, 
without change of shape. Since the uniform 
propagation and shape preservation of the soliton 
are achieved through a delicate balance between 
linear wave dynamics and nonlinearity. In other 
words, the Rossby soliton is non-diffusive and 
non-dispersive (Boyd 1980), which makes it  a 
perfect test case for verification of numerical 
schemes in ocean models since any diffusion and 
dispersion in the numerical solution of the 
Rossby soliton are computational errors. 
Interested readers are referred to the website:  
http://marine.rutgers.edu/po/index.php?model=te
st-problems.   
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      In this study, we first show instability and 
large diffusion and dispersion errors in numerical 
solution of the Rossby soliton using the existing 
schemes such as the upwind, central, and Lax-
Wendroff schemes. Then, we present a 
transformed flux-form semi-Lagrangian (TFSL) 
scheme, which has explicit form and much less 
diffusion and dispersion errors. The numerical 
solution of the Rossby soliton exists even for 
large Courant numbers.  

The rest of paper is organized as follows. 
Section 2 describes the equatorial Rossby soliton 
and its usefulness for the ocean model 
verification. Section 3 shows the failure of the 
three existing schemes (upwind, central, and 
Lax-Wendroff) in simulating the equatorial 
Rossby soliton. Section 4 introduces  the TFSL 
scheme.  Section 5 derives the analytical form of 
the amplification factor of the TFSL-scheme and 
shows that this factor does not larger than 1 for 
large Courant number such as 20. Section 6 
shows the capability of the TFSL-scheme in 
simulating the equatorial Rossby soliton.  
Section 7 presents the conclusions. 

 
2. Rossby Soliton  

Let Ω be the angular frequency of earth’s 
rotation and R be the earth radius, and let (x, y) 
be the spatial coordinates with unit vectors (i, j) 
and t be the time.  Consider a single layer of 
homogeneous ocean layer with depth of H. The 
Lamb’s parameter is defined by 
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where g is the gravitational acceleration. The 
length and time are nondimensionalized by 
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Let (x, y) be the non-dimensional Cartesian 
coordinates, (u, v) be the non-dimensional 
velocity components in the meridional and 
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latitudinal directions, and φ  be the non-
dimensional surface elevation.   After defining 
                  s x ct≡ − ,                                     (3) 
and transforming the nonlinear shallow water 
wave equations into a frame of reference moving 
with the linear wave, the flow variables ( , ,u v φ )  
for the mode-1 can be represented by (Boyd 
1980) 
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and the variable ( , )s tη  satisfies  
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which is  the Korteweg-de Vries (KDV) equation 
with the exact solution,   
      ( ) ( )2 2, sechs t A B s B tη μ= +⎡ ⎤⎣ ⎦ ,  

20.772 ,  0.394,   0.395A B B μ= = = .            (6)                      
Substitution of the exact solution (6) into the 
third term in the lefthand side of (5) leads to  
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where S is treated as a source/sink term. 
Evidently equation (7) has the analytical solution 
(6), and therefore it can be used to verify the 
stability of the numerical schemes since the 
diffusion term has been changed into the given 
source/sink term.   
 
           3.  Several Existing Schemes  
  
       To solve equation (7) numerically, the fluid 
is assumed to occupy equatorial region around 
the earth. The zonal direction is discretized into 
120 cells (i.e., resolution at 3o longitude). The 
depth of fluid is set up as 100 m. The increment 

sΔ is given by   
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The time step is denoted by tΔ . Equation (7) 
can be discretized by the commonly used upwind 
scheme,  
    1
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the central  scheme,  

 1 1 1

2

n n
n n n ni i
i i i iC S t

η η
η η+ + −

−
= + + Δ ,                  (11) 

and the Lax-Wendroff scheme,  
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where the superscript and subscript denote the 
time step and the horizontal grid,  
              ( , )n

i i nx tη η≡ ,                                  (13) 
 and  
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In order to compare the difference between 
numerical and exact solutions (westward 
propagating Rossby soliton), the zonal equatorial 
strip is assumed infinitely long. When the 
Rossby soliton travels over n×120 cells, it goes 
around the earth once n times (called n cycles).  
The exact solution at t = 0 is taken as the initial 
condition,  
                 ( ) 2, 0 sec ( )s A h Bsη = ,               (15)                                 
with s = 0 denoting 0o longitude.  

The three difference equations (10)-(12) are 
solved numerically from the initial condition 
(15) representing the upwind, central, and Lax-
Wendroff schemes (Lax and Wendroff 1960) 
with varying  tΔ  at each time step for a given 
Courant number (C = 0.75),  
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After obtaining the numerical solution, ( , )i nx tη , 

substituting it into (4c) yields ( , , )i j ns y tφ .  The 
accuracy of the schemes can be verified through 
their capability in predicting the westward 
propagation of the Rossby soliton. To do so,  the 
surface elevation  ( , , )i j ns y tφ  is plotted with  
contour values of  2.13,  4.26,  6.4, 8.53, 10.66, 
12,79, 14.93, and 17.06 cm. All the numerical 



 

schemes greatly distort the Rossby soliton (Fig. 
1). The numerical solution diverges at 60o45’W 
using the upwind scheme, and 38o45’W using 
the central scheme. The numerical solution does 
not diverge using the Lax-Wendroff scheme, 
however, the solution is totally different from the 
analytical solution after propagating one cycle 
around the earth (comparing Fig. 1d to Fig. 1a).  
 

4. TFSL-Scheme 

4.1. Semi-Lagrangian Method 
 
Consider the advection of a passive scalar 

( , )tφ x  by the velocity u(x, t). The Eulerian 
formulation of this is 
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S
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Fig. 1. Surface elevation ( , , )s y tφ of the Rossby 
solitons obtained from (a) exact solution, and 
numerical integration with C = 0.75 using (b) FTT, 
(c) implicit central, (d) explicit central, and (e) up 
wind schemes. Note that the three existing schemes 
(implicit central, explicit central, up wind) are 
unstable, but the FTT scheme is stable. The 
solutions ( , , )s y tφ  are plotted at four time 
instances for the Rossby soliton (exact solution) 
westward propagating   90o, 180 o, 270o, and 360o 
(return to the initial location). 

where x is the position vector, D/Dt denotes the 
material derivative, while the Lagrangian 
counterpart is  

       ,pd
S

dt

φ
=      ( , )p

p

d
t

dt
=

x
u x .            (17)                           

Here, the subscript ‘p’ shows the fluid particle in 
Lagrangian sense. Although (16) and (17) carry 
the same physical information, their 
discretization and numerical implementation is 
different: (16) is discretized on an Eulerian grid 
with a finite number of grid points and then 
time-advanced, while (17) is integrated for a 
finite number of fluid particles. 

Semi-Lagrangian methods combine both 
Eulerian and Lagrangian points of view: the 
scalar field is discretized on an Eulerian grid, but 
is advanced in time using (17). The key element 
in accomplishing this is the identification of each 
grid point xi as the arrival point, for instance, at 
t t+ Δ , of a particle originating from *

ix  at time 
t. The algorithm has three steps: (a) the particle 
associated with each grid point xi at time t t+ Δ  
is traced back to its location *

ix  at time t,  

            * ( )
t t

i i t
dτ τ

+Δ

= − ∫x x u ;                      (18) 

(b) The scalar value at ( *

ix , t) is obtained by 
interpolating the known values at neighboring 
grid points,  
                    [ ]* ˆ( , ) {( },i ikx t P tφ φ= x ,           (19) 

where P is any interpolation operator and { ˆ
ikx } 

denotes the set of interpolation points associated 
with *

ix , for example, the nodes of the cell 

containing *

ix ; (c) Finally, the scalar is updated,  

        *( , ) ( , )i i it t t S tφ φ+ Δ = + Δx x .              (20) 
Thus, the main issues of the semi-Lagrangian 
method are the backward integration in step (a) 
and the interpolation in step (b).  
 

4.2. Flux Form 
  
       Equation (16) can be rewritten in the flux 
form with inclusion of diffusion,   
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φ
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∂
= ∇ + = − + ∇

∂
F F ui ,           (21) 

where κ is the diffusion coefficient. Let the 
dependent variable ( , )tφ x   be defined on the 
space Ω   
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with (Lx, Ly, Lz) the lengths  in (x, y, z) directions. 
Let  
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be the uniform spatial increments with (Nx + 1, 
Ny + 1, Nz +1) the grid numbers.  Integrating (21) 
for the finite volume, 
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from nt  to 1n nt t t
+
= + Δ , we obtain  the finite 

difference equation of the flux-averaged 
transport, 
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where (F, G, H) are components of the vector F, 
and  

           
1

( , 1) 1 n

n

n n

t

t

dt
t

+

+ =
Δ ∫F F ,                           (23) 

represents the temporal average (from tn to tn+1). 
The tilde represents the volume average over 

ijkΩ ,    
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The hat represents the combined volume (over 

ijkΩ ) and  temporal average (from tn to tn+1), 
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For the finite volume ijkΔΩ , the flux at x =  

1 / 2ix
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and t = tn  is calculated by 
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To solve equation (22) numerically, we need to 
compute the temporally integrated fluxes,  
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If these fluxes are computed using the semi-
Lagrangian method, it is called the flux-form 
semi-Lagrangian scheme (Lin and Rood 1996). 
  
      4.3. Transformation of Temporal into 
Spatial Mean   

 
For simplicity and no loss of generality, we 

consider one dimensional problem of (22) 
without source/sink term (i.e., ˆ

ijkS  = 0), 
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From the semi-Lagrangain consideration, we 
have  
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Using the characteristic-line concept, the flux at 
time step tn+1 and location xi-1/2 can be 
transformed into the flux at time step tn and 
location xi-1/2-C (Fig. 2),   
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Fig. 2.  Temporally varying flux at the boundary xi-

1/2 from tn to tn + tΔ is transformed into spatially 
varying flux at t n from xi-1/2 - C tΔ  to xi-1/2 using the 
characteristic-line concept.  
 
 



 

where   
                             /C u t x= Δ Δ ,                (30) 
is the Courant number.  Substitution of (30) into 
(29) leads to  
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where  
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The bracket [ ]  represents the round-off integer. 
Similarly, the temporally averaged flux at the 
right boundary (x = 1/ 2ix + ) 
  

( )

( )

( )

1 / 2 1 / 2

1 / 2 1 / 2
( , 1)

11 / 2

1
1

1 1 / 2

1
( ) / 2              if 

2

/ 2

[

1
] / 2    if 

2

n n

i i C

n n

i i
n n

mi
n n

k i k i k
k

n n

m i m i C

F F C

F F

F
F F

F F C

δ

δ

δ

+ + −

+
+

−+

− + −
=

+ − + −

+ ≤

+

≈
+ + +

+ >

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

∑
              

                                                                        (33) 
The temporally averaged fluxes ( , 1)
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Fig. 3.   Same as Fig. 2 except at the left boundary 
of the integration domain.  
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Substitution of (31) and (33) into the difference 
equation (26) leads to  
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which is  called the Transformed Flux-formed 
Semi-Lagrangian (TFSL) scheme for the 
advection-diffusion equation (21). Here,  
                         1 / 2D C m= − − .  
For 1 / 2C ≤ , the TFSL scheme is the same as 
the Lax-Wendroff  scheme.  Comparing to the 
central difference (CED), the TFSL-scheme has 
an extra positive term, 
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for 1 / 2C ≤ .   This term can be regarded as the 
numerical (positive) diffusion which leads to 
computational stability. Different schemes have 
different algorithms to compute the temporally 
averaged fluxes ( , 1)
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nt t+ Δ ).  The TFSL scheme has second order 
accuracy in both time and space.  



 

      5. Stability of the TFSL Scheme 
 

Stability of numerical schemes is an 
important issue in solving the advection equation 
(16).  In Section 3, we showed the instability of 
the existing schemes (upwind, central, and Lax-
Wendroff). To determine the stability of the 
TFSL scheme (36), the Fourier series expansion 
is used. Decay or growth of an amplification 
factor indicates whether or not the numerical 
algorithm is stable (von Neumann and Richtmyer 
1950). Assuming that at any time step tn, the 
compute solution n

iφ  is the sum of the exact 
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                                                            (39) 
The finite mesh function, n

iε , can be decomposed 

into a Fourier series,  
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with   1I ≡ − , ( ,n

ja θ ) being the amplitude and 
phase angle of the jth harmonic. Substituting 
(40) into (39) yields  
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is called the amplification factor, whose 
magnitude is given by   
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                                                                       (43) 
The TFSL-scheme is computationally stable if 

( , ) 1g Cθ ≤  and computationally unstable if 

( , ) 1g Cθ > . Fig. 4 shows that  ( ), 1g Cθ ≤   
for all θ  and C (larger than 20), which implies 
that the TFSL-scheme (36) is very stable.  
 
 6.  Simulating the Rossby Soliton 
Using the TFSL Scheme  

 
The TFSL-scheme (36) is only for 

spatially variant and temporally invariant u.  



 

When u [or 1fη−  in (7)] at xi-1/2 varies with time 
from tn to tn+1, concept of variant characteristic 
lines can be used to determine u(xi-1/2, t) with sub 
time-steps ( 1/ 2 ,tδ 1 ,tδ ..., mtδ ) (between tn and 
tn+1) from u(x, tn) at grid points (xi-1, …, xi-m, xi*), 
and for  u > 0 the time  from  the left neighboring 
grid x i-[k+1]  to xi-k is given by  (Fig. 5), 
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where  
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 The parameter Ci-k is the Courant number for 
sub time steps. A formula similar to (44) can be 
obtained for u < 0 (using the right neighboring 
grid).   The temporally averaged fluxes from tn to 

nt t+ Δ   can be calculated by (taking ( , 1)
1/ 2
n n

iF +
−  

[see (31)] as the example) 
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Fig. 4.   Dependence of the amplification factor  
( ),g Cθ   of the TSFL scheme on θ  and C. 
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Fig. 5.  Same as Fig. 2 except  for temporally 
varying u.  
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                                                                       (46) 
Equation (7) for the Rossby soliton is discretized 
using the flux form, 
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where ˆ
iS  is the temporally-spatially averaged 

source term   
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with S(s, t) given by (8).  The difference equation 
(47) is solved numerically from the initial 
condition (15) using the TFSL-scheme. To 
compare with the existing schemes (upwind, 
central, and Lax-Wendroff schemes), the 
Courant number is set to 0.75.   After the 
numerical solution ( , )i nx tη  is obtained, 

substituting it into (4c) yields ( , , )i j ns y tφ , as 
shown in Fig. 6. Note that the three existing 
schemes (upwind, central, and Lax-Wendroff) 
are all unstable (Fig. 1), but the TFSL-scheme is 
stable. After propagating westward around the 
earth the numerical Rossby soliton (using the 
TFSL scheme) shows almost non-difussive and 
non-dispersive.  
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Fig. 6. Surface elevation ( , , )s y tφ of the Rossby 
soliton obtained from (a) exact solution, and 
numerical integration with C = 0.75 using (b) 
TFSL-scheme. The solutions ( , , )s y tφ  are plotted 
at four time instances for the Rossby soliton (exact 
solution) westward propagating   90o, 180 o, 270o, 
and 360o (return to the initial location). 
 



 

      To show the quality of the TFSL-scheme, the 
difference equation (47) is integrated for C = 1.5 
for a long time period corresponding to the 
Rossby soliton propagates westward around the 
earth 5 times. The solution ( , , )i j ns y tφ  is stable 
all the time (Fig. 7). The relative root-mean-
square error (rrmse),   
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                                                                       (49) 
is calculated to  illustrate  the accuracy of the 
TFSL scheme. Table 1 shows RRMSE at the end 
of first five cycles around the earth. The error 
varies from 2.66% for the first cycle to 3.53% for 
the fifth cycle.  
 
Table 1.  RRMSE of the surface elevation predicted 
using the TFSL-scheme after the first five cycles 
around the earth. 

Cycle     1     2        3       4       5 
RRMSE 
(%) 

 2.66  2.86   3.00  3.22  3.53 

 
7. Conclusions 

(1) This study shows that TFSL scheme is a 
promising stable and accurate scheme for solving 
the advection-diffusion equation. Magnitude of 
the amplification factor does not exceed 1 for 
large Courant number (e.g., for C = 20). The 
Fourier analysis shows that the TFSL scheme 
has second-order accuracy in time and space. 
Computational stability and higher accuracy than 
the widely used schemes (central, upwind, and 
Lax-Wendroff) makes this scheme useful in 
ocean modeling, computational fluid dynamics, 
and numerical weather prediction.  
  
(2) Several major features distinguish the TFSL 
scheme from the existing schemes, both Eulerian 
and semi-Lagrangian. First, the flux (F) at the 
boundary of each grid cell is computed not from 
a single time step (present or next) but from 
temporal integration from present to next time 
step. Second, this temporal integration is 
transformed into spatial integration at the present 
time step using the characteristic line method.  
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Fig. 7.  Surface elevation ( , , )s y tφ of the Rossby 
soliton after 1-5 cycles around the earth obtained 
from numerical integration with C = 1.5 using the 
TFSL scheme.   

 
(3) The equatorial Rossby soliton is used to test 
the capability of the TFSL scheme since it has 
exact solution.  The equation is solved 
numerically from the soliton initially located at 
the equator and 0o longitude with the overall 
Courant number of 0.75.   The existing 
numerical schemes greatly distort the Rossby 
soliton and diverge as it propagates:  60o45’W 
(upwind), 38o45’W (central), and totally 
distorted after one cycle around the earth (Lax-



 

Wendroff). However, the TFSL scheme does not 
distort the Rossby soliton and converge as it 
propagates many cycles around the earth.  
 
(4) Future studies include applying TFSL 
scheme to non-uniform grid systems as well as 
designing higher order TFSL schemes. 
            

Acknowledgments 

The Office of Naval Research, the Naval 
Oceanographic Office, and the Naval 
Postgraduate School supported this study. 
 

References 

Boyd, J.P., 1980: Equatorial solitary waves. Part-
1: Rossby Solitons. Journal of Physical 
Oceanography, 10, 1699-1717. 
 
Chu, P.C., and C.W. Fan, 1998: A three-point 
combined compact difference scheme. Journal of 
Computational Physics, 140, 370-399.  
 
Chu, P.C., and C.W. Fan, 1999: A three-point 
non-uniform combined compact difference 
scheme. Journal of Computational Physics, 148, 
663-674.  
 
Lax, P., and B. Wendroff, 1960: Systems of 
conservation laws. Communication on Pure and 
Applied Mathematics, 13, 217-237. 
 
Lin S., and R. B. Rood, 1996: Multidimensional 
flux-form semi-Lagrangian transportation 
schemes. Monthly  Weather  Review, 124, 2046–
2070. 
 
Rood, R. B., 1987: Numerical advection 
algorithms and their role in atmospheric 
transport and chemistry models. Review of  
Geophysics, 25, 71–100. 
 
von Neumann, J., and R.D. Richtmyer, 1950: A 
method for the numerical calculation of 
hydrodynamic shocks. Journal of Applied 
Physics, 21, 232. 
 


