
*
K
e

P1.1 Forecasting of the winds along the glide paths at an airport by applying a
chaotic oscillatory neural network (CONN) to the Doppler LIDAR data

K.M. Kwong
Hong Kong Polytechnic University

P.W. Chan *
Corresponding author address: P.W. Chan, Hong
ong Observatory, 134A Nathan Road, Hong Kong
mail: pwchan@hko.gov.hk

1. INTRODUCTION

The complex terrain in the vicinity of the Hong
Kong International Airport (HKIA) may lead to
low-level windshear and turbulence (below 1600 feet)
affecting the arriving/departing aircraft. To monitor
these wind disturbances which mostly occur in
non-rainy weather conditions, Doppler LIght Detection
and Ranging (LIDAR) systems are operated by the
Hong Kong Observatory (HKIA). For more efficient
monitoring, the LIDARs have been configured to scan
along the glide paths of the aircraft in making wind
measurements. The Doppler velocities collected in
this “glide path scan” are used to construct the
headwind profile to be encountered by the aircraft,
from which significant wind changes are detected
automatically in the issuance of windshear alerts
(Shun and Chan, 2008). They have also been used
in experiments to calculate the spatial distribution of
turbulence intensity along the glide paths (Chan and
Kwong, 2008).

The above applications of the LIDARs aim at
detecting windshear and turbulence when they arise.
The next step would be the forecasting of such
phenomena given the latest wind conditions along the
glide paths as shown in the LIDAR data. The
forecasting could involve numerical weather prediction
(NWP) models which are based on all the physical
equations governing the evolution of the atmosphere.
In Kwong and Chan (2008), an alternative approach is
adopted, namely, the application of a chaotic
oscillatory-based neural network (CONN) to the
LIDAR data. The evolution of the wind field over a
2D region (namely, a scanning sector by the LIDAR) is
considered in that paper, and the wind vector at a
particular location within the 2D region in the future is
supposed to be related to the winds at the
neighbouring positions in the past. While this
method takes into account the winds over a wider
area (e.g. wind vectors upstream of the location in
question and thus advection of the wind disturbances
across the location by the “prevailing” wind), both the
training and the prediction are computationally
expensive, thus prohibiting the use of a training
dataset over a longer period and the prediction for a
longer time. For instance, in Kwong and Chan
(2008), training of CONN is limited to the LIDAR data
in the last several hours only, which most probably
has not covered the wind features to be predicted.
As a result, there is a compromise between the
amount of data to be input into CONN and the period
of training dataset due to computational constraint.

The present paper considers another approach

in the application of CONN, namely, focusing on the
wind data along the glide path only (and thus a 1D
problem instead of 2D) whilst extending the period of
the training dataset (in the order of days). With the
use of a 1D approach, it is thus assumed that the wind
at a particular location along the glide path in the
future is related to the winds along the whole glide
path in the past in a certain way. This assumption is
considered to be a much simplified view of the wind
field evolution compared to the 2D approach in Kwong
and Chan (2008), but the advantage is that it allows
the wind data collected by glide path scans over a
much longer period to be used in the training of the
neural network, which has a higher chance to cover
the wind features to be predicted. The structure of
CONN used in the present study is described in
Section 2. Examples of wind predictions are given in
Section 3.

A number of tuning of CONN has been tried out
in the present study, namely, the choice of averaging
method of the CONN-output wind profiles, the number
of neurons in the hidden layer and the ordering of the
training data. They are described in Sections 4 to 6.
A longer forecasting time has also been considered,
as described in Section 7. Section 8 gives the
conclusions of this study.

2. STRUCTURE OF CONN

The wind data (Doppler velocity) along the
whole glide path at each time instance is input into
CONN. The output of CONN is also the winds along
the glide path but at a future time, and the neural
network learns from the root-mean-square difference
between the predicted wind data and the actually
measured wind data by the LIDAR through back
propagation. In the testing process, the neural
network uses the experience gained in the training
process to generate the forecast for the next time
interval(s). The structure of CONN is schematically
shown in Figure 1.

Figure 1 Structure of CONN

CONN in the present study is made up of a
multi-layered perception (MLP) neural network and a
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Lee Oscillator (Retrograde Transport) with different
sets of parameter settings. Details of the Lee
Oscillator could be found in Kwong and Chan (2008).
In the hidden and output layers, two different
parameter settings of the Lee Oscillator have been
used. Their bifurcation diagrams are shown in
Figure 2. The idea is to use a combination of two
oscillators with different degree of oscillations (smaller
oscillation for type A and greater oscillation for type B).

(a)

(b)

Figure 2 Bifurcation diagrams of Lee Oscillator
(Retrograde Transport) with parameter setting A (a)
and B (b).

3. EXAMPLES OF PREDICTION

Two cases are considered in this paper. In the
first case, easterly winds prevailed at HKIA and
mountain wake flow appeared to the southwest of the
airport, as shown from the LIDAR measurement of the
wind (Figure 3(a)). An aircraft landing at the south
runway from the west (the 07RA runway corridor,
location in Figure 3(a)) conducted missed approach at
04:20 UTC on that day due to encountering of
significant windshear. The headwind profiles
measured by the LIDAR over this runway corridor
around the event time are given in Figure 3(c)).
Training of CONN is conducted using the 07RA
headwind profiles from 00 UTC, 16 March to 03 UTC,
20 March 2006. Forecasting is then made from
03:02 UTC to 04:33 UTC, 20 March 2006. The
forecast at time 03:02 UTC is based on the LIDAR
data at 03:00 UTC, the forecast at 03:06 UTC is
based on the data at 03:02 UTC, and so on. The
forecast results are shown in Figure 3(e). It could be
seen that, though the forecast headwind change is
smaller than reality (see the wind changes in Figure
3(c) vs. Figure 3(e)), the occurrence of windshear
between 0.6 and 1 nautical mile away from the runway
end in the period of about 04:00 to 04:30 UTC has

been successfully captured.

The second case is wind change due to sea
breeze in autumn. Sea breeze is also a major cause
of low-level windshear at HKIA. Once again, the
runway corridor 07RA is considered. Easterly winds
prevailed over HKIA on that day and westerly sea
breeze set in to the west of the airport in late morning,
as depicted by the LIDAR measurement (Figure 3(b)).
The evolution of headwind profiles over 07RA is
shown in Figure 3(d). In CONN, the LIDAR’s
glide-path scan data over 07RA in the period 00 UTC,
24 October to 02 UTC, 28 October 2007 are used in
the training. Forecast is made from 02 UTC to 03
UTC, 28 October 2007 in the same way as the first
case. The forecast result is shown in Figure 3(f).
Once again, CONN successfully captures the
headwind change from 0.7 to 1.1 nautical miles from
the runway end between 02:30 and 03:00 UTC on that
day. Compared to the actual measurements, the
forecast headwind change appears to be a little bit
less abrupt (i.e. a smaller slope of headwind change
with distance from the runway threshold).

Tuning of CONN and a trial of a longer
forecasting period have been tried out. The results
are discussed in Sections 4 to 7. In these studies,
only the sea breeze case on 28 October 2007 has
been considered, as a first step. More cases would
be considered in further studies.

4. CHOICE OF AVERAGING METHOD

The forecast headwind profiles in Figure 3(e)
and (f) seem to be rather noisy. Part of the noise
arises from numerical computation, which may be
exaggerated by the Lee Oscillator. For comparison
purpose, the forecast for the sea breeze case has
been made with the traditional MLP in which
hyperbolic tangent threshold function is employed.
For the CONN forecasts, a number of variants has
been tried out, including:

(a) CONN forecast is made for a particular single
run;

(b) a total of 15 forecasts of the wind field is made
for the following few minutes and their arithmetic
average is taken;

(c) a total of 15 forecasts is made, two extreme
wind forecasts removed and the average of the
remaining 13 headwind profiles taken;

(d) the median of the 15 forecasts is made.

The resulting forecasts are shown in Figure 4.
Compared to the result of a single run, the use of
traditional MLP and the smoothing of CONN forecasts
produce less noisy headwind profiles. The quality of
the forecast wind data is studied by calculating
correlation coefficient with the actually measured
headwind profiles. The performance statistics are
shown in Table 1. It turns out that the use of
arithmetic average of the 15 CONN forecasts (i.e.
method (b)) gives the highest correlation coefficient on
average.

5. NUMBER OF NEURONS IN THE HIDDEN
LAYER

There is no general rule about the optimal



number of neurons in the hidden layer for a neural
network to give the best forecast, but this is rather a
matter of trial and error for the particular problem
under study (Zhang et al., 1998). As a tuning of
CONN for the present study, the number of neurons in
the hidden layer has been varied between 5 and 9 for
the sea breeze case. The forecast headwind profiles
for different number of neurons are shown in Figure 5.
There are slight differences in the forecast results.
For instance, for the headwind profile at 02:58 UTC,
28 October 2007, the use of more neurons in the
hidden layer appears to cause the resulting profile to
become more or less “flattened” (i.e. relatively small
change of headwind with distance away from the
runway threshold) at an increasing distance from the
runway end, from about 1.1 nautical mile for 5
neurons to about 1.3 nautical mile for 9 neurons.
Compared with the actual measurement (Figure 3(f)),
a choice of 7 – 8 neurons seems to give the most
reasonable forecast.

6. ORDERING OF THE TRAINING DATA

It would be interesting to see if the CONN
forecast is related to the ordering of the wind data in
the training dataset. For the sea breeze case, the
LIDAR data between 24 and 28 October 2007 have
been used in the training of CONN. The wind data
between 00 UTC of a day in this period up to 00 UTC
of the following day is taken as a data chuck, and the
four data chucks are permuted in each training
process. Only the data between 00 and 02 UTC, 28
October 2007 remain as the last part in the training
dataset. The forecast result of one such permutation
is shown in Figure 6. The headwind change
associated with the sea breeze is still successfully
captured. It appears that the ordering of the training
data, at least the period from 00 UTC of a day to the
same time of the following day is preserved, does not
significantly affect the forecasting of the main feature
in the headwind change.

7. FORECASTING FOR A LONGER TIME

In the previous discussion, the forecasting is
made by steps of every few minutes or so. The
possibility of having a longer forecasting period is
considered, namely:

(a) Skip 4 – The first 4 scans (lasting 7-8 minutes) in
the forecast period are not considered, so that
data at 02:00 UTC is used to forecast the time
02:07 UTC, data at 02:02 UTC is used to
forecast the time 02:09, etc.

(b) Skip 7 – The first 7 scans (lasting 13-14 minutes)
are not considered, so that data at 02:00 UTC is
used to forecast the time 02:13 UTC, data at
02:02 UTC is used to forecast the time 02:14,
etc.

(c) Skip 8 – The first 8 scans are not considered.
(d) Skip 16 – The first 16 scans are not considered.

The results are shown in Figure 7. It could be
seen that with a larger number of scans to be skipped,
the headwind change pattern associated with sea
breeze becomes less apparent. Considering all the
results, it looks like no skipping of the scans produces
the best results, and skipping would cause the quality
of wind forecast to progressively deteriorate.

8. CONCLUSIONS

Wind forecasting using CONN over a glide path
of the airport is demonstrated in this paper. Two
typical cases of low-level windshear have been
considered, namely, terrain-disrupted airflow and sea
breeze. For the limited number of cases being
studied, it appears that CONN has some skills in
forecasting the headwind changes. With the use of
the sea breeze case, the CONN forecasting method
has been tuned, e.g. in the choice of averaging
method to minimize the computational noise and the
determination of the number of neurons in the hidden
layer. The ordering of the wind data in the training
dataset (at least for permutation of data of different
days) does not seem to significantly affect the
capturing of the major headwind change feature.
Finally, forecast for a longer time period has been
considered by skipping the first 4 to 16 scans in the
forecast period, but the result does not seem to be
promising with the increasing number of scans to be
skipped. More windshear and turbulent flow cases
captured by the LIDARs at HKIA would be used to
further study the wind forecasting capability of the
CONN proposed in this paper, especially for the more
challenging cases of flow disruption by terrain.
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(a) LIDAR velocity imagery of spring-time easterly
wind case with mountain wake

(b) LIDAR velocity imagery of sea breeze case

(c) the headwind profiles over western approach to
south runway as measured by the LIDAR for the
spring-time easterly wind case

(d) the headwind profiles over western approach to
south runway as measured by the LIDAR for the sea
breeze case

Figure 3 LIDAR velocity imagery and headwind profiles for the two cases under study in Section 3.

(e) the predicted headwind profiles based on CONN
for the spring-time easterly wind case

(f) the predicted headwind profiles based on CONN
for the sea breeze case

mountain wake

07RA

interface between easterly
wind and westerly sea breeze

wind change
about 14 m/s

wind change
about 8 m/s

wind change associated with mountain wake

wind change associated with sea breeze

region in which
headwind change
with distance is less
abrupt c.f. reality



MLP Single run using CONN

Average of15 trials using CONN Removal of the two extremes based on CONN

Median of CONN forecasts

Figure 4 Results of different averaging methods for CONN forecasts

Table 1 Root-mean-square-errors of MLP forecast and different CONN forecasts



5 neurons 7 neurons

8 neurons 9 neurons

Figure 5 CONN forecasts with different number of neurons in the hidden layer

Figure 6 CONN forecast with non-sequential ordering of training dataset (according to time) as described in
Section 6 of the main text



Skip 4 Skip 7

Sip 8 Skip 16

Figure 7 CONN forecasts with different number of scans being skipped between the training data and the
forecast time


