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ABSTRACT 
A new approach to error characterization in Sea 

Surface Temperature (SST) is proposed and tested with 
the SST data of NOAA-17, NOAA-18, and MetOp-A 
produced by the Advanced Clear Sky Processor for 
Oceans (ACSPO v1.0) newly developed in NESDIS. 
The approach is based on using continuous analytical 
functions rather than conventional look-up tables. Also, 
SST anomalies are analyzed with respect to the 0.25° 
daily Optimum Interpolation (OI v2.0) Reynolds and 
0.05° OSTIA SST analyses rather than with respect to in 
situ SSTs. Bias dependencies are represented by 
continuous analytical functions, whose parameters are 
estimated through curve/surface fitting after binning 
along the factors. These functions have a simple form 
and have been constructed with consideration of the 
major physical factors affecting errors in the retrieval 
SST. Preliminary results of fitting bias vs. number of 
ambient clear-sky pixel (NAC) are presented. The fit 
parameters are largely consistent across different 
platforms as well as relatively stable as a function of 
time. The analyses in this study are only performed for 
nighttime ACSPO products and the focus is on the 
mean error (bias). Future work will include analyses of 
daytime data and of standard deviation (stdv) of error. 
Also, the same methodology will be employed to 
evaluate the model minus observation bias in ACSPO 
(Liang et al., 2009). 

KEYWORDS – Error characterization, Sea Surface 
Temperature, ACSPO 

1. INTRODUCTION 

Sea surface temperatures (SST) have been 
operationally retrieved from satellites since the 1970s 
from infrared (IR) top-of-atmosphere brightness 
temperatures (BT) measured by sensors, such as the 
Advanced Very High Resolution Radiometer (AVHRR). 
The 3.7 and 10-12 μm IR spectral windows are usually 
employed and SST is estimated as a linear combination 
of BTs in dual or triple windows (e.g., McClain et al., 
1985; Walton, 1988). The National Oceanic and 
Atmospheric Administration (NOAA) maintains a series 
of operational satellites, which carry AVHRR 
instruments and from which SST products of high 
resolution (4 km) and accuracy (approaching 0.4K rms) 
(Kearns et al., 2000) have been generated. The 
European satellite MetOp-A launched in 2006 also 

carries an AVHRR sensor, and its data are analyzed in 
this study as well. 

Customarily, accuracy and precision of satellite 
SST are evaluated against in situ SST and 
characterized by one global mean bias and one 
standard deviation (stdv) of retrieved minus in situ SST 
(e.g., Walton et al., 1998; Kilpatrick et al., 2001). For the 
purpose of quality control, the retrieved SST in each 
pixel may further contain quality flags or confidence 
levels. The Group for High-Resolution SST (GHRSST) 
has become increasingly interested in supplying error 
estimates in each individual pixel, the so-called Single-
Sensor Error Statistics (SSES) (Donlon et al, 2007). 
Such information is critically important for blending 
different SST products. Also, these estimates may be 
useful for SST developers to evaluate the performance 
of their SST product, identify potential areas for 
improvement, and guide its future optimization. For SST 
users, the SSES can provide comprehensive quality 
information about the SST product and facilitate 
decisions on the domains of data suitable for their 
particular applications. Although the current ACSPO 
v1.0 does not comply with this GHRSST requirement 
yet, work is underway to incorporate the SSES in the 
future version of ACSPO. This study reports our 
intermediate progress towards this goal. 

It has been shown that the currently operational 
regression SSTs have large observational-condition 
dependent biases (e.g., Merchant et al., 2008). They 
may arise from various sources, including error in 
specifying retrieval coefficients (e.g., Merchant and Le 
Borgne, 2004), residual cloud (e.g., Merchant et al., 
2005), and aerosols (e.g., Walton et al., 1998; Vasquez-
Cuervo et al., 2004), just to name a few. The linear 
regression SST may also be subject to two other 
systematic biases due to prior error and error arising 
from the non-linearity of the converting radiances to BTs 
at some extreme conditions (Merchant et al., 2008). 
Improving regression (e.g., Emery et al., 1994; Walton 
et al., 1998) and physical (i.e., RTM-based inversion) 
SST retrievals (e.g. Merchant et al., 2008) has been 
subject of ongoing research. Also, cloud screening and 
quality control vary largely from one SST product to 
another. It is thus imperative to develop an objective 
methodology to quantify SST errors as a function of the 
full retrieval space, for different SST products. 

Currently, the SSESs are routinely provided by 
different SST producers to the GHRSST and used for 
global analyses such as OSTIA (Stark et al., 2007). 
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However, there have been few publications on the 
specifics of how the error characterization of satellite 
SSTs have been performed. For instance, Minnett and 
Evans (2006) introduced the 7-dimensional SSES 
hypercube of bias and stdv of MODIS SST as a function 
of season, day/night, latitude, view angle, surface 
temperature, water vapor proxy, and retrieval quality 
level. The hypercube technique has been used to 
provide SSES information to the GHRSST Pilot Project 
based on satellite-in situ match-up databases. Castro et 
al. (2008) studied SST error of infrared and microwave 
satellite retrievals vs. in situ observation. Bias/stdv 
dependencies on retrieval conditions, such as wind 
speed, water vapor, view angle, and SST, were 
represented using look-up tables and 1-to-5% stdv 
reduction was achieved after bias correction. Vazquez-
Cuervo et al. (2004) analyzed correlations between the 
Pathfinder SST and the Along-Track Scanning 
Radiometer (ATSR-2) versus aerosol/cloud information 
derived from the Total Ozone Measuring Spectrometer 
(TOMS). They have shown that consistency between 
these two SST products can be improved after flagging 
aerosol/cloud-contaminated pixels using regression 
analyses of SST error vs. aerosol/cloud. 

This study examines the SSES in the new SST 
product available from the Advanced Clear-Sky 
Processor for Oceans (ACSPO) recently developed at 
NOAA/NESDIS. Analyses were conducted with several 
months of global AVHRR data from NOAA-17, -18, and 
MetOp-A. Instead of in situ SST, the retrieved SSTs in 
this study were referenced to the global analysis SSTs. 
Two reference global daily analyses were used, the 
Optimum Interpolation (OI) daily 0.25° (Reynolds et al., 
2007) SST (hereafter Reynolds SST), and the 
Operational SST and Sea Ice Analysis (OSTIA) daily 
0.05° (Stark et al., 2007). This allows us to substantially 
increase the match-up statistics while largely preserving 
their quality because both reference fields used here 
have been anchored to in situ SST. SST anomaly was 
analyzed as a function of ambient clear-sky information 
available from ACSPO data itself, and atmospheric and 
surface information saved in ACSPO granules from the 
NCEP Global Forecast System (GFS) data. Pronounced 
dependencies of SST anomaly on the number of 
ambient clear-sky pixels (NAC), column water vapor, 
and view angle were observed. Our study initially 
focuses on the NAC dependence and its 
characterization, which was found to be one of the 
strongest factors affecting the ACSPO SST bias. 

In contrast to the previous studies, which used the 
LUT approach (Minnett and Evans, 2006; Castro et al., 
2008), this study employs continuous analytical 
functions to represent the error statistics vs. multiple 
environmental factors. An exponential fit function was 
tested to approximate the bias dependence vs. number 
of ambient clear-sky pixel (NAC) (cf., Liang et al., 2009). 
Note that NAC characterizes a fraction of ambient cloud, 
land, and ice, but it may also be an indicator of residual 
subpixel contamination by those factors (Dash and 
Ignatov, 2008). To minimize the effect of outliers, a 
robust least-square method was adopted in fitting. 
Cross-platform consistency was examined and long-

term stability monitored over time for the fit coefficients 
of bias vs. NAC. 

The ACSPO SST data and other reference/ancillary 
data used in this study are described in Section 2, 
where the definitions of retrieval conditions are also 
introduced. Section 3 presents the statistical model of 
error characterization and the corresponding methods 
for measurement and fitting. Analyses and discussion 
comprise Section 4. 

2. DATA 

The ACSPO has been developed at 
NOAA/NESDIS and its version 1.0 became operational 
in May 2008. Its further improvements are underway, 
with the objective to ultimately replace the heritage 
clear-sky radiances (CSR), SST, and aerosol products 
currently produced by the heritage Main Unit Task 
(MUT) system, which has been in operational use since 
the early 1980s (McClain et al., 1985; Walton et al., 
1998). Similarly to the MUT, ACSPO generates AVHRR 
clear-sky radiances over oceans, from which SST and 
aerosol products are derived. A major improvement in 
ACSPO over the MUT is the full integration of global 
clear-sky AVHRR radiances with the National Centers 
for Environmental Prediction Global Forecast System 
(NCEP/GFS) atmospheric and Reynolds et al. (2002, 
2007) SST fields. These fields are used as input to the 
Community Radiative Transfer Model (CRTM) to predict 
the top-of-atmosphere BTs under clear-sky conditions. 

The SST data used in this study is the ACSPO 
nighttime clear-sky satellite regression SST. The 
algorithm used is the triple-window MCSST 
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where 543 ,, TTT  are the measured AVHRR brightness 
temperatures in channels 3B, 4, and 5, and θ  is the 
view zenith angle. In the first version of ACSPO, the 
form of the regression equation and the coefficients 

61 ~ aa  have been adopted from MUT to quickly 
evaluate the consistency of the two SST systems. The 
cloud mask used in ACSPO v1.0 is documented in 
Petrenko et al. (2008). 

Reynolds OI v2. daily 0.25° (AVHRR only) 
(Reynolds et al, 2007) and daily OSTIA 0.05° (Stark et 
al., 2007) SSTs were chosen as reference SSTs for 
anomaly analyses in this study. Reynolds SST (AVHRR 
only) is a bulk SST obtained by blending AVHRR 
satellite SST from NAVOCEANO SEATEMP system 
(May et al., 1998) and in situ observations. OSTIA is a 
foundation SST obtained by blending multiple infrared 
and microwave satellite retrievals with in situ 
observations. Using different references can help to 
quantify and minimize the reference-SST specific errors 
on the SSES. 

Atmospheric data available in ACSPO granules are 
derived from the NCEP GFS data. The embedded 
reference SST data in ACSPO v1.0 come from the 
weekly Reynolds (Reynolds et al., 2002). Daily 
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Reynolds and OSTIA SST were appended to ACSPO 
granules offline for this study. Note that in ACSPO v1.1, 
which is currently being tested, weekly Reynolds was 
replaced by daily AVHRR-based SST product from 
Reynolds et al. (2007). 

 
Figure 1. Global nighttime maps of SST anomalies from 

MetOp-A with respect to Reynolds and OSTIA for 17 
September 2008. 

Fig. 1 shows maps of the global SST anomalies 
“ACSPO-Reynolds” and “ACSPO-OSTIA” from 
nighttime MetOp-A for 17 September 2008. Cold 
anomalies are found in most areas. In particular, 
anomalies are more pronounced in dynamic areas (e.g., 
Gulf Stream) and near land areas (coastlines in the 
Northern Hemisphere). As observed from anomalies 
maps for other days (not shown here), anomalies not 
only vary in space but also in time. Interestingly, 
ACSPO SST appears closer to OSTIA than to Reynolds 
SST. 

The geographical distribution of the bias in Fig.1 
likely reflects distribution of the parameters that affect 
the SST retrieval. In what follows, a conglomerate of 
these parameters will be referred to as the “retrieval 
space,” which can be loosely defined by three aspects: 
observation geometry, atmospheric status, and air-sea 
boundary conditions. Atmospheric state may include 
ambient clear-sky conditions, water vapor, and aerosol. 
In this study, the ambient clear-sky conditions are 
defined by the number of clear-sky ocean pixels in a 
predefined proximity of each pixel, NAC. It represents 
how many non-clear-sky ocean pixels (cloud, ice, land) 
are found in the vicinity of a pixel. Column water vapor 
is used here to represent the full water vapor profile. 

(Note that aerosol information has not been included, as 
well as the air-sea boundary conditions including SST 
itself, air-sea temperature difference and wind speed, 
and time history of those parameters that affect the 
surface fluxes.) 

These factors span the multidimensional “retrieval 
space” and can be represented as a vector of factors  

],,,,,,[ τθα as TTVWN=
v   (2) 

which include NAC, N ; view angle, θ ; water vapor, W ; 
wind speed, V ; aerosol optical depth, τ ; SST, sT ; and 
air temperature, aT . In this study, only NAC is 
considered, and view angle and column water vapor are 
preliminarily analyzed. Column water vapor (calculated 
by the integration of NCEP GFS water vapor profiles) 
and view angle are reported in the ACSPO granules. 
The NAC was calculated offline, using the ACSPO 
cloud, ice, and land mask information (Petrenko et al., 
2008). 

Note also that Minnett and Evans (2006) use 
previously available quality levels as one of the 
governing factors (additional dimension of the SSES 
hypercube). Here, we have adopted a different 
approach when full retrieval domain is considered in the 
SSES analyses, with the expectation that the error 
characterization itself should provide us such quality 
information. 

NAC was counted within a circle of 12-pixel radius 
surrounding each clear-sky pixel. After performing tests 
using different radii, 12-pixel radius was found to be the 
optimal choice, which adequately accounts for the effect 
from ambient pixels. Search radii based on the distance 
(e.g., 50 km) were also tested but not adopted for 
routine processing due to the significant increment in 
computation time, which had only minor effects on the 
result. Note that at the edge of each scan, NAC can only 
be counted in a “partial circle.” This limitation was 
compensated by scaling NAC to an equivalent full circle. 
The minimum NAC is zero and the maximum is ~470. 

 
Figure 2. Global map of number of ambient clear-sky 

ocean pixels (NAC) corresponding to Fig.1. 

Fig. 2 shows an example of an NAC global map 
derived from the same data as Fig. 1. Over most open 
ocean, the NAC indicates the probability (or the volume) 
of ambient (and potentially residual subpixel) cloud. 
Larger NAC means current pixel is situated in the 
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middle of mostly clear-sky area, which is also likely 
associated with a lower probability of subpixel residual 
cloud, and vice versa. Indirectly, NAC also serves as a 
measure of the distance from the current pixel to cloud, 
ice, or land. The smaller the NAC, the closer the 
distance to the edge of the SST valid retrieval domain. 

3. METHODOLOGY 

The basic assumption of error characterization is 
that the SST residual, in some statistical sense, 
continuously depends on the retrieval conditions. Our 
analyses have shown that probability density functions 
(PDF) of the biases are close to a Gaussian shape, 
which can be described by its mean and variance. 
Therefore, a normal distribution of the retrieval error can 
be represented as 

),(~ σbNTΔ    (3) 

where b  and σ  denote mean bias and stdv, 
respectively. 

Since the error distribution continuously varies in 
the retrieval space spanned by environmental factors, 
its mean bias and stdv can be expressed as continuous 
functions of the retrieval space as follows 
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where αv  denotes the multidimensional vector of 
retrieval space. In this study, its elements iα  are NAC, 

N ; view zenith angle, θ ; and column water vapor, W . 
Note that higher orders of statistics of the distribution, 
such as skewness and kurtosis, should be taken into 
account in the same way as mean and stdv, if the real 
PDF deviates from a normal distribution. 

The objective of error characterization is to estimate 
the dependence of b  and σ  on the retrieval space. 
These analytical functions can then be used to predict 
SST accuracy and precision in each retrieval point, and 
to perform SST bias corrections (e.g., Castro et al., 
2008). In this study we concentrate on the mean bias, 
b . 

For each sample of observations, there is an SST 
error and a set of corresponding measured and 
environmental factors. To estimate statistical 
information, retrieval space has to be first stratified into 
bins along each dimension. The b  and σ  are then 
estimated within each bin as 
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Here, T̂Δ  is the observed bias in a pixel; b̂ , σ̂  is the 
estimated mean bias and stdv; and n  is the sample 

size within each bin. The estimates of b̂  and σ̂  can 

then be plotted in the retrieval space as data points as a 
function of bin position, from which continuous hyper-
surfaces will be fitted. These hyper-surfaces are 
geometric realizations of the functions )(⋅f  and )(⋅g  in 
Eq.(4). Now the problem becomes a curve-fitting 
problem, i.e., 

εαβ += )(ˆ vvfb    (6) 

where ε  denotes the error between the binned estimate 

of bias, b̂ , and the fitted curve. β
v

 denotes the 
parameters of function )(⋅f . 

One possible approach is to empirically select the 
analytical form of the )(⋅f  function and then fit its 
parameters via mathematical approaches, such as non-
linear least square methods like Levenberg-Marquardt 
algorithm (e.g. Nocedal and Wright, 1999). In this case, 
the curve-fitting problem is in fact a minimization of 
errors between the data points and fit functions, 

∑ −=
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vv
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where m  denotes the number of binned observations. 

Assuming the form of the fit function is correctly 
selected, the error of observation comes from several 
sources. One major error source is the measurement 
error in the x  (factors) and y  (SST) values. Another 
major error may come from other potential factors that 
have not been included in the analysis due to a lack of 
measurement or forecast information about them (e.g., 
aerosol in this study). Errors may also result from the 
statistical estimation of bias/stdv within each bin, but 
these errors can be minimized by reducing the size of 
the bin while increasing statistics in it (such as by 
increasing time interval for data collection; this approach 
is explored below in this study). 

Some errors may severely affect the fitting process 
or may even lead to its failure to converge. Hence, a 
high robustness of fitting is required to minimize the 
effect of these random and uncontrollable noises on the 
result. A robust fit method, based on an iterative 
reweighting least square (Holland and Welsch, 1977) 
was adopted in this study. It iteratively performs the 
weighted non-linear least square. The weights are 
calculated based on the distance of each data point’s 
deviation from the fitted function in the last iteration. The 
bi-square like weight (DuMouchel and O'Brien, 1989) is 
used 
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where id  denotes the deviation of the i -th data point. 
This approach reduces the weight of each data point in 
inverse proportion to the fitting error, i.e. the further the 
data point deviates from the fit function, the less 
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significant its contribution will be to the fitting in the next 
iteration. 

4. ANALYSIS AND CHARACTERIZATION of NAC 
DEPENDENCE 

In the initial analyses reported here, the scope was 
limited to a more simple, as well as stable and uniform, 
subsample of the ACSPO SST product. This decision 
was made to minimize the uncertainty from the 
reference data, uncontrollable factors, and strong SST 
anomalies, which may affect the match-up error. 
Therefore, only nighttime ACSPO data were initially 
considered. The statistical analyses were performed in 
one-day and one-week increments to assure a 
statistically significant sample pool and to check 
sensitivity to the sample size. 

To investigate the bias dependencies, samples are 
binned equidistantly along each factor. Special analyses 
have shown that the θ  and W  dependencies are 
coupled and should be analyzed together, whereas the 
NAC dependence is well decoupled from both θ  and 
W . The number of bins was selected to be 20 for a 
single independent factor (NAC) and 14 for two 
interrelated factors ( θ  and W ). Subsequent analyses 
have shown that the bin size has negligible impact on 
the result, when the number of bins is varied from 10 to 
50. 

Fig. 3 shows b  and σ  as a function of NAC, along  

with the normalized histogram of the NAC. 
Statistics are calculated based on one week of global 
nighttime ACSPO data from 14 to 20 September 2008. 
Both mean bias and stdv show pronounced trends for 
both reference SSTs (Reynolds and OSTIA) and for all 
three platforms. As expected, both mean bias and stdv 
gradually approach an asymptotic regime as NAC 
increases, suggesting that the influences of ambient 
non-clear-sky ocean conditions progressively diminish 
as a pixel moves away from the boundaries of the clear-
sky ocean domain. As an example, if an NAC>100 
threshold is used to define the “confidently cloud-free” 
zone, this corresponds to 85% of total clear-sky area in 
the current ACSPO product. Note that the NAC 
dependencies are fairly consistent for three platforms 
(NOAA-17, NOAA-18, and MetOp-A) except that NOAA-
18 has a little different histogram shape. This may be 
due to its different local overpass time around 2:00 PM, 
whereas NOAA-17 and MetOp-A take their observations 
around 9:30 AM local time. 

An exponential fit function was selected to describe 
bias vs. NAC dependence in Fig. 3, such as 

)exp()( 210 NaaaNfb N −+=≡   (9) 

where parameter 0a  is the asymptotic limit for a mean 
bias over clear-sky ocean (i.e., when NAC is 
approaching infinity); 1a  is the amplitude of the mean 
bias caused by the NAC; and 2a  is its decay rate. 

 

         
(a) ΔSST (ACSPO-Reynolds) vs. NAC                                 (b) ΔSST (ACSPO-OSTIA) vs. NAC 

Figure 3. Histograms (with total number of observations) of NAC, and bias/stdv of SST anomalies as a function of 

NAC, from 14-20 September 2008. 
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Figure 4. Fitting bias vs. NAC dependencies shown in Fig.3. 

     
 (a) Daily statistics wrt. Reynolds                                      (b) Daily statistics wrt. OSTIA 

     
   (c) Weekly statistics wrt. Reynolds                                (d) Weekly statistics wrt. OSTIA 

Figure 5. Time series of fitted parameters of )(Nfb N=  with respect to Reynolds and OSTIA reference SSTs, for 
daily and weekly statistics. 
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Fig. 4 gives the results of fitting the curves in Fig. 3 
using Eq.(9). A good consistency is observed across 
platforms. Recall that the definition of NAC includes 
several different factors. For example, a low NAC could 
result from scattered cloud around the pixel or from the 
pixel lying too close to a large continuous cloud area. 
These two situations may affect the SST bias differently, 
but this difference is not considered in the current 
approach. Besides, influence from non-ocean neighbor 
pixels (land, ice) would also contribute to this NAC 
count. Overall, NAC appears to be a good integral 
indicator of a wide variety of these different effects. On 
the other hand, this wide range of factors may explain 

the abnormal fluctuating patterns in the bias 
dependencies, which may affect the long-term stability 
in the time series of the fitted parameters. 

The stability of fitting is further investigated by 
trending the fit parameters in time in Fig. 5. Three-
month data (from September to November 2008) have 
been processed. Each data point stands for the fitting of 
a one-day (daily statistics) or one-week moving window 
(weekly statistics) of ACSPO data. (Note that two 
successive points have only one-day shift, and the fitted 
parameters from the previous point are used as an initial 
guess for the non-linear fitting in the next point.) 

 

       
(a) Wrt. Reynolds                                                          (b) Wrt. OSTIA 

Figure 6. Time series of first four moments of statistics before and after correction of bias vs. NAC (corresponding to 
MetOp-A of Fig.6, coefficients are derived from previous day data and  then applied to correction of current day data). 
 

        
(a) Wrt. Reynolds                                                           (b) Wrt. OSTIA 

Figure 7. Time series of root-mean-squared improvement in stdv after correction of bias vs. NAC (corresponding to 
Fig.7). 
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The parameter 0a  shows that, on average, the 
ACSPO v1.0 product is biased low with respect to 
Reynolds daily SST by 0.1-0.4K. The bias is much 
smaller with respect to OSTIA from 0.0-0.3K. This is a 
known problem in ACSPO v1.0, and work is underway 
to improve this bias in ACSPO v1.1, which is currently 
under testing. The amplitude of mean bias, 1a , ranges 
from 0.4 to 0.6 K for Reynolds and 0.5 –to 0.7 K for 
OSTIA and is fairly stable for both SST anomalies. The 
decay rate, 2a , appears smaller and more stable in the 
OSTIA case than Reynolds, which suggests sensitivity 
to the reference field. Weekly statistics show much more 
stable performance than the daily results. Analyses are 
underway to better understand and independently verify 
these results using in situ SST reference. 

To evaluate the effectiveness of error 
characterization, bias correction was applied to 
independent data sample. Time series of the first four 
orders of statistics—mean, stdv, skewness, and 
kourtosis—of daily ACSPO data before and after bias 
correction are shown in Fig. 6. Since results of different 
platforms are very comparable, only MetOp-A is shown 
here. The data are the same as in Fig. 5, except that for 
each day, the bias correction was done using the fit 
coefficients derived from previous day. The global mean 
bias is centered close to zero after bias correction. The 
significant improvement in skewness indicates that one 
of the major reasons for the negative asymmetry of the 
original SST anomaly distribution was contamination by 
residual cloud. The stdv and kurtosis also improve in the 
bias-corrected sample. The corresponding reduction in 
stdv, σΔ , can be estimated from 2

after
2
before

2 σσσ −=Δ  
and is plotted in Fig. 7. Note that a 0.1 K root-mean-
squared reduction in stdv is significant. Our preliminary 
analyses indicate that the entire stdv root-mean-squared 
reduction after three-factor bias correction could be up 
to ~0.2 K. 

5. DISCUSSION AND FUTURE WORK 

Further analyses are underway, including fitting 
bias and stdv dependencies as a function of other 
multidimensional factors. Fig. 8 gives an example of 
SST anomaly (NAC-detrended using Eq.(9)) vs. water 
vapor (W ) dependencies for a number of different view 
angles. It is clearly seen that water vapor dependence is 
significantly affected by view angle. Since this coupling 
is nonlinear, multifactor dependence analysis and fitting 
must be used to characterize SST error behaviors. 
These analyses are currently underway and their results 
will be presented elsewhere. 

Comparing to the look-up table approaches 
adopted by Minnett and Evans (2006) and Castro et al. 
(2008), the continuous error characterization analyzed 
in this study has at least two advantages. First, it is 
simple and easy to document and reuse, as it only 
requires knowledge of a few parameters in a fixed 
functional form. The fit parameters, however, change in 
time. Second, it is more stable (less sensitive to noise) 
because it only permits a limited number of degrees of 

freedom, sufficient to describe the intrinsic factors 
affecting the SST error. As such, it may offer a natural 
way of separating “signal” from “noise” in SSES. 
However, effective use of this approach requires 
successfully resolving the difficulties in selecting the 
appropriate form of the fitting functions and overcoming 
multidimensional curve fitting challenges. 

 
Figure 8. SST bias vs. water vapor dependencies 

under different view angles. 

Analyses of ACSPO SST anomalies with respect to 
Reynolds and OSTIA reference SSTs show clear and 
stable dependencies of biases as a function of NAC. 
Using analytical functions to continuously describe error 
characteristics in the retrieval space thus appears 
feasible. For different platforms, error characteristics 
may vary greatly, due to differences between sensors, 
local overpass times, and SST regression equations. 
Preliminary analyses in this study show that the 
exponential representation of the NAC dependence can 
achieve reasonable stability and cross-platform 
consistency, at least in the three-month time period and 
for NOAA-17, -18, and MetOp-A data considered here. 

Several factors may affect the accuracy of this 
study, such as other potential predictors of SST error 
not included in this analysis (e.g., aerosol) and errors in 
calculation (or measurement) of the dependent and 
independent factors used in the statistical analyses 
(including errors in the reference SST). In future studies, 
more factors will be included in the analyses. Stdv 
dependencies will be analyzed and fitted in the same 
manner as the bias considered in this study. Different 
reference SSTs, including in situ SSTs, will be used to 
minimize the effect of possible errors in the reference 
SST fields on the error characteristics. This method will 
be extended to more general regimes, such as daytime 
and more seasons. Newer versions of ACSPO will be 
consistently tested to measure the improvement. We 
also plan to apply this methodology to the analysis of 
the Model (CRTM) minus Observation (AVHRR) bias, 
which is critically important for physical SST retrievals. 

One last issue to be addressed is the 
independence between reference SST and object SST. 
Most global SST analyses such as OSTIA use satellite 
SST as input and bias-correct it and blend it with other 
SST products using the SSES provided in the data. 
Independence between reference SST and satellite SST 
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must be ensured in error characterization to avoid a 
possible vicious circle where positive feedbacks could 
deteriorate the robustness of error characterization. A 
potential solution is using in situ SST in validation of 
error characterization results to restore independence 
and robustness of error characterization. 

ACKNOWLEDGEMENTS 

This work was supported by the GOES-R Algorithm 
Working Group (Manager Dr. Mitch Goldberg), funded 
by the GOES-R Program Office. F. Xu also 
acknowledges the CIRA visiting scientist fellowship. We 
thank our colleagues John Sapper (OSDPD), Prasanjit 
Dash (STAR/CIRA), Boris Petrenko (STAR/IMSG), 
Nikolay Shabanov (STAR/IMSG), Yury Kihai 
(STAR/PSGS) and Denise Frey for helpful discussions. 
The views, opinions, and findings contained in this 
report are those of the authors and should not be 
construed as an official NOAA or US Government 
position, policy, or decision. 

REFERENCES 
Castro S. L., G. A. Wick, D. L. Jackson, and W. J. Emery. 

2008. Error characterization of infrared and microwave 
satellite sea surface temperature products for merging 
and analysis, J. Geophys. Res., 113, C03010, 
doi:10.1029/2006JC003829. 

Dash, P., and A. Ignatov. 2008. Validation of clear-sky 
radiances over oceans simulated with MODTRAN4.2 and 
global NCEP GDAS fields against nighttime NOAA15-18 
and MetOp-A AVHRRs data. Remote Sens. Environ., 
112(6), 3012–30. 

Donlon et al. 2007. The Global Ocean Data Assimilation 
Experiment High-Resolution Sea Surface Temperature 
Pilot Project, Bull. Am. Meteorol. Soc., 88(8), 1197–1213. 

DuMouchel, W. and F. O’Brien. 1989. “Integrating a Robust 
Option into a Multiple Regression Computing 
Environment,” in Computing Science and Statistics: 
Proceedings of the 21st Symposium on the Interface, (K. 
Berk and L. Malone, eds.), American Statistical 
Association, Alexandria, VA, pp. 297–301. 

Emery W. J., Y. Yu, G. A. Wick, P. Schluessel, and R. W. 
Reynolds. 1994. Correcting infrared satellite estimates of 
sea surface temperature for atmospheric water vapor 
attenuation, J. Geophys. Res., 99(C3), 5219–5236. 

Holland, P. W. and R. E. Welsch. 1977. Robust regression 
using iteratively reweighted least-squares, 
Communications in Statistics - Theory and Methods, 
Volume 6, Issue 9, pages 813–827. 

Kearns, E. J., J. A. Hannifin, R. H. Evans, P. J. Minnett, and O. 
B. Brown. 2000. An independent assessment of 
Pathfinder AVHRR sea surface temperature accuracy 
using the Marine Atmosphere Emitted Radiance 
Interferometer (MAERI), Bull. Am. Meteorol. Soc., 79, 
397–407. 

Kilpatrick, K. A., G. P. Podesta and R. Evans, 2001, Overview 
of the NOAA/NASA advanced very high resolution 
radiometer Pathfinder algorithm for sea surface 
temperature and associated matchup database, J. 
Geophys. Res., 106, C5, 9179-9197 

Liang, X., A. Ignatov, and Y. Kihai. 2009. Implementation of the 
Community Radiative Transfer Model (CRTM) in AVHRR 
Clear-Sky Processor for Oceans (ACSPO) and validation 
against nighttime radiances, J. Geophys. Res., submitted. 

May, D. A., M. M. Parmeter, D. S. Olszewski, and B. D. 
McKenzie. 1998. Operational processing of satellite sea 
surface temperature retrievals at the Naval 
Oceanographic Office. Bull. Amer. Meteor. Soc., 79, 397–
407. 

McClain, E. P., W. G. Pichel, and C. C. Walton. 1985. 
Comparative performance of AVHRR-based multichannel 
sea surface temperatures. J. Geophys. Res., 90, 11 587–
11 601. 

Merchant, C. J., P. Le Borgne, A. Marsouin, and H. Roquet. 
2008. Optimal estimation of sea surface temperature from 
split-window observations, Remote Sensing of 
Environment Volume 112, Issue 5, and Earth 
Observations for Terrestrial Biodiversity and Ecosystems 
Special Issue, 15 May 2008, Pages 2469–2484. 

Merchant, C. J. and P. Le Borgne. 2004. Retrieval of sea 
surface temperature from space based on modeling of 
infrared radiative transfer: Capabilities and limitations, 
Journal of Atmospheric and Oceanic Technology 22 (11), 
pp. 1734–1746. 

Merchant C. J., A. R. Harris, E. Maturi, and S. Maccallum. 
2005. Probabilistic physically based cloud screening of 
satellite infrared imagery for operational sea surface 
temperature retrieval. Q.J.R. Meteorol. Soc., 131, 2735–
2755. 

Minnett P. J. and R. H. Evans. 2006. Validation of sea surface 
temperatures from MODIS, presented at the MODIS 
Science Team Meeting, Adelphi, MD, Oct. 31 to Nov.2 
2006. (Available at 
http://modis.gsfc.nasa.gov/sci_team/meetings/200610/pre
sentations/cal/minnett.pdf) 

Nocedal, J. and S. J. Wright. 1999. Numerical Optimization, 
Springer, New York. 

Petrenko, B., A. Heidinger, A. Ignatov, and Y. Kihai. 2008. 
Clear-Sky Mask for the AVHRR Clear-Sky Processor for 
Oceans. AGU Ocean Sciences Meeting, Orlando, FL, 2-7 
March 2008. 

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and 
W. Wang. 2002. An improved in situ and satellite SST 
analysis for climate. J. Clim., 15, 1609–1625. 

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. 
Casey, and M. G. Schlax. 2007. Daily high-resolution 
blended analyses for sea surface temperatures, J. 
Climate, 20, 5473–5496. 

Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch. 
2007. OSTIA: An operational, high resolution, real time, 
global sea surface temperature analysis system, Oceans 
'07 IEEE Aberdeen, conference proceedings. Marine 
challenges: coastline to deep sea. Aberdeen, Scotland.  

Vazquez-Cuervo, J., E. M. Armstrong, and A. Harris. 2004. The 
effect of aerosols and clouds on the retrieval of infrared 
sea surface temperature, Journal of Climate 17 (20), pp. 
3921–3933. 

Walton, C. C. 1988. Nonlinear multichannel algorithms for 
estimating sea surface temperature with AVHRR satellite 
data, J. Appl. Meteorol., 27, 115. 

Walton, C. C., W. G. Pichel, J. F. Sapper, and D. A. May. 1998. 
The development and operational application of nonlinear 
algorithms for the measurement of sea surface 
temperatures with the NOAA polar-orbiting environmental 
satellites, Journal of Geophysical Research 103, pp. 
27,999–28,012. 


