
P2.5     VARIATIOANL RETRIEVAL OF RAINDROP SIZE DISTRIBUTION FROM 
POLARIMETRIC RADAR DATA IN PRESENCE OF ATTENUATION 

Qing Cao1,3, Guifu Zhang2,3 and Ming Xue2,4 

1: School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73072 
2: School of Meteorology, University of Oklahoma, Norman, OK 73072 

3: Atmospheric Radar Research Center, University of Oklahoma, Norman, OK 73072 
4: Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 73072 

 
1. INTRODUCTION 
Most national weather radar networks in the world 
operate at the C-band. The WSR-88D radar network in 
the United States works at the S-band frequency (or 10 
cm wavelength) but many weather radars in other 
countries as well as the TDWR (Terminal Doppler 
Weather Radars) of the U.S. operate at the C-band (5 
cm wavelength). Recently, X-band (3 cm wavelength) 
weather radars such as those in the CASA (Center for 
Collaborative Adaptive Sensing of the Atmosphere) IP1 
network have received more attention. Unlike S-band 
radars, the propagation effect of precipitation 
attenuation on C-band and X-band measurements 
cannot be ignored. Attenuation correction is significant 
problem for radar-based rain estimation and 
precipitation microphysics studies at these shorter 
wavelengths.  
 
For single-polarization radars, attenuation correction is 
mainly based on the Hitschfeld-Bordan (H-B) method 
and its revised versions (e.g., Delrieu et al. 2000; Zhang 
et al. 2004; Berne and Uijlenhoet 2006). With 
dual-polarization radars, the measured propagation 
phases (e.g., differential phase or specific differential 
phase) have been widely used for attenuation correction. 
Such algorithms include direct phase correction (DP) 
method (e.g., Bringi et al. 1990), data fitting method 
(Ryzhkov and Zrnic 1995), ZPHI algorithm (Testud et 
al. 2000), self-consistence (SC) method (Bringi et al. 
2001) and revised SC methods (e.g., Park et al. 2005; 
Vulpiani et al. 2005; Gorgucci and Baldini 2007; Liu et 
al. 2006; Ryzhkov et al. 2007). All these algorithms 

apply various empirical relations associated with the 
attenuation. For example, the deterministic power law 
relation between the attenuation and radar reflectivity is 
the basis for the H-B and revised H-B algorithms. The 
power law relations between the attenuation and 
specific differential phase (KDP) are essential for 
phase-based attenuation corrections. These empirical 
relations should be uniquely known for the DP method 
while the coefficients could be adjusted by the SC 
method and its revised versions.  
 
There are problems in the algorithms of attenuation 
correction mentioned above. The attenuation estimated 
from empirical relations may have been affected by the 
strong constraints that sacrifice a lot of physical 
variability. On the other hand, the measurement error, 
which can further deteriorate the attenuation estimation, 
has not been fully taken into account in these 
algorithms. There are possible ways to solve these 
problems. Since drop size distribution (DSD) of 
precipitating hydrometeors is fundamental for 
precipitation microphysics and radar measurements, the 
sacrifice of physical variability can be mitigated by 
estimating DSD parameters, which are used to estimate 
the attenuation (e.g., Meneghini and Liao 2007). In 
addition, the effect of measurement error can be 
minimized through a variational approach by optimizing 
the use of all available measurements with error-based 
weights (e.g., Hogan 2007). The combination of these 
two approaches should have great potential to improve 
attenuation correction and QPE. To do the above, the 
DSD parameters will need to be estimated as part of the 
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state vector. Because of the involvement of the DSD 
parameters in the observation operator, the variational 
scheme becomes highly non-linear. The forward model 
of radar measurements (i.e., attenuated observations) 
and the corresponding partial derivatives are 
complicated functions of the DSD parameters. The 
development of adjoint codes is a problem. 
 
In this study, two approaches mentioned above are 
combined for the first time to correct attenuation and 
estimate rain DSD parameters from the X-band 
polarimetric radar data (PRD). The DSD is retrieved 
through a two-dimensional variational scheme. 
Attenuation effect is built into the forward observation 
operator and the attenuation correction is accomplished 
adaptively during the iterative optimization/estimation 
process. The rest of the paper is organized as follows. 
The methodology is described in the section 2. The 
algorithm is evaluated in section 3 using simulated 
X-band PRD from measured S-band PRD. The retrieval 
based on real X-band PRD is analyzed in section 4. 
Possible error sources of the algorithm are discussed in 
section 5 and conclusions in section 6.   
 
2. METHODOLOGY 
 
2.1 Variational approach 
The PRD used for the variational retrieval are radar 
reflectivity of horizontal polarization (ZH), differential 
reflectivity (ZDR), and KDP. The optimal use of the 
measurements involves the minimization of cost 
function , 
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The cost function J is composed of four parts. Jb is the 
background part. The other three terms correspond to 
the observations of ZH, ZDR, and KDP, respectively. 
Superscript T denotes matrix transpose. w represents 
relative weights of the observation terms, which is 
associated with the signal-to-noise ratio (SNR). x is the 
state vector and xb is the background or first guess. y 
contains the radar observations. H denotes the nonlinear 
observation operator of radar variables. B is the 
background error covariance matrix. R is the 
observational error covariance matrix. The w can be 
regarded as a part of R. In this study, we separate them 
for the convenience of defining a simple w in term of 
SNR. Subscripts ZH, ZDR and KDP are used to denote the 
terms for corresponding the observations. In the above 
equations, we try to follow the standard notations used 
in modern data assimilation literature, as defined in Ide 
et al. (1997). 
 
The size of matrix B is n2 where n is the size of state 
vector x. The full matrix is usually huge. Matrix 
computation and storage, especially for the inversion of 
B, can be a major problem during the iterative 
minimization of the cost function. To solve this problem, 
a new state variable v is introduced, written as, 

,                  (3) 

with  and  (Parrish and Derber 
1992). δ is the notation of the increment. D is the square 
root of the background error covariance matrix B. The 
cost function is then rewritten as, 
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In this way, the inversion of B is avoided. The 
minimization of cost function J is achieved by searching 
the minimum gradient of cost function ∇vJ, which is 
given by, 
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H represents the Jacobian operator, a matrix containing 
the partial derivative of observation operator H with 
respective to each element of the state vector. d is the 
innovation vector of the observation, i.e., d=y-H(xb). 
 
The spatial influence of the observation is determined 
by the background error covariance matrix B. Huang 
(2000) showed that the element bij of matrix B could be 
modeled as a spatial filter, 

,          (6) 

where subscripts i, j denotes two grid points in the 
analysis space.  is the background error covariance. 

rij indicates the distance between the ith and jth grid 
points. rL is the decorrelation length of observed 
physical quantity. In this study, rL is assumed to be 
constant in the two-dimensional analysis space, i.e., the 
error covariance is spatially homogeneous at horizontal 
plane, as is for the isotropic covariance option in Liu 
and Xue (2006). The square root of B, D, can be 
computed by applying a recursive filter described by 
Gao et al. (2004) and Liu et al. (2007). In this way, the 
cost of computation and storage can be reduced 

significantly (by a factor of B dimension), compared to 
the computation of inversion of B.  
 
2.2 Forward observation operator  
In this study, the state variables to be retrieved or 
estimated variationally are parameters in the assumed 
DSD model for the hydrometeors. The gamma 
distribution 

         (7) 

is common used to model DSDs, where N0  is a number 
concentration parameter is, µ is the shape parameter and 
Λ the slope parameter of the gamma DSD. In this study, 
we apply the gamma DSD model with a constraining 
relation derived by Cao et al. (2008), 

  .   (8) 

This relation is an update of constraint-gamma (C-G) 
DSD model proposed by Zhang et al. (2001) and it 
reduces the number of free parameters from 3 to 2. The 
C-G DSD model has been successfully used in direct 
DSD retrievals from radar measured ZH and ZDR (e.g., 
Brandes et al. 2004; Cao et al. 2008). It should be 
appropriate for testing our variational retrieval here. In 

our formulation, = log10(N0) and Λ are chosen as the 

two state variables, thus the state vector x is composed 

of and Λ at all grid points.  

 
Given the two DSD parameters at each grid point, the 
DSD can be determined. Therefore, rain properties, 
including intrinsic ZH and ZDR, as well as KDP can be 
estimated as well. Forward operators of ZH, ZDR and KDP 
we use are given by Zhang et al. (2001),  

 (mm6m-3),  (9a) 

(dB),         (9b) 

and 



 (deg km-1) 

 (10). 
where fa(π) and fb(π) represent the backscattering 
amplitudes at horizontal and vertical polarizations, 
respectively. Similarly, fa(0) and fb(0) represent forward 
scattering amplitudes. λ is the wavelength. Kw = (εr - 1)/ 
(εr + 2) and εr is the complex dielectric constant of 
water. Re( ) denotes the real part of a complex value. 
The scattering amplitudes fa,b(0/π) are calculated based 
on the T-matrix method. For computational efficiency, 
pre-calculated values of the scattering amplitudes are 
stored in a lookup table for raindrop diameters from 0.1 
mm to 8.0 mm and they are used in the numerical 
integrations of the above equations 
 
Specific attenuations at horizontal (AH) and vertical (AV) 
polarizations can be calculated by  

 (dB km-1), 

(11) 
where is the extinction cross section at horizontal 
or vertical polarizations, respectively. The specific 
differential attenuation ADP is defined as, 

   (dB km-1) .        (12). 

 
If specific attenuations are known, the attenuated ZH and 
ZDR at each range gate can be calculated by, 

,     (13a) 

and,         (13b) 

where numbers i and n denote the ith and nth range gates 
from the radar location, respectively. Δr is the range 
resolution. 
 
2.3 Lookup table method 
In Eq. (5), it is expensive to directly compute the 
transpose of linearized operator H, which is the matrix 
of the partial derivative. In general, adjoint method is 

applied to compute HT efficiently without storing the 
full matrix. In this study, the calculations of radar 
variables [in Eqs.(8)-(10)] are based on the 
pre-calculated values of scattering amplitudes. Without 
the approximation (e.g., using a empirical relation to 
model the scattering amplitudes), it is difficult to 
represent the derivatives functionally in terms of DSD 
parameters. In such a case, it is a problem to develop an 
adjoint for the calculation of HT. In order to solve this 
problem, the lookup table method is applied.  
 
The values of partial derivative of each of the 
polarimetric measurement variables, i.e., ZH, ZDR, or 
KDP, with respect to each of the two state variables, i.e., 
Λ or N*

0, at each grid point, are needed. That is, there 
are total six tables of the derivative (i.e., 

) for the 

observation operator H. In each lookup table, the 
derivative values are pre-calculated for parameter Λ 
varying from 0 to 50 and parameter N*

0 varying from 0 
to 10. To ensure the accuracy, the range of each 
parameter is discretized at an interval of 0.1. As the 
results, each of the lookup table has nvar × 501 × 101 
elements, nvar is the dimension of Λ and N*

0. This way, 
the partial derivative value for the operator H is found 
from these tables for any given values of Λ and N*

0. 
Interpolation can be performed for values between the 
lookup table values of Λ or N*

0 to further improve the 
accuracy. Generally, the nearly values in the lookup 
tables are sufficiently accurate for the iterative 
minimization of cost function because the parameter 
ranges are wide. For state variables out of the table 
range, derivative value at the end of the range is 
assumed although in practice this rarely happens.  
 
With the lookup tables, the derivative calculation cost 
can be saved. In the similar way, the calculations of 
intrinsic (i.e., non-attenuated) ZH, ZDR, KDP, AH, and ADP 
are made efficient by the lookup table method as well, 



given any two state parameters. As a result, the 
observational operator H is computed as the 
combination of different values found in various lookup 
tables, avoiding integral calculations in the forward 
model. Preliminary results in following sections have 
demonstrated that the lookup table is an efficient tool to 
deal with non-linear forward models of complicated 
functions.   
 
2.4. Iteration procedure 
The iteration procedure of minimizing the cost function 
is shown in Fig. 1. At the beginning of the program, 
necessary data files such as all lookup tables, the 
background, radar measured ZH, ZDR, KDP, and 
signal-to-noise ratio (SNR) are loaded. In the mean 
time, initial parameters of the variational scheme are 
configured. Radar measurements are then preprocessed. 
Within the analysis region, only radar measurements 
with SNR > 1dB are used. Moreover, observational 
weights are set differently. The weight (i.e., element of 
matrix w) is set to 1 for SNR > 20dB, 1/2 for SNR > 
10dB, 1/4 for SNR > 5 dB and 1/8 for SNR < 5dB, 
respectively.  
 
With initial state vector (e.g., set v=0), intrinsic 
variables (i.e., ZH, ZDR, KDP, AH, and ADP) are found for 
each grid point through lookup tables. Corresponding 
Jacobian matrices Hs are constructed based on the 
lookup tables as well. After the interpolation from grid 
points to the observation points, attenuated ZH and ZDR 
are calculated according to Eq. (13). Calculated 
polarimetric variables, i.e., ZH, ZDR and KDP, and 
measured PRD are used in Eq. (5) to calculate the 
gradient of cost function. The initial first guess is 
always assumed to be the background. During the 
minimization process, the state vector is updated at each 
loop until the iteration is converged. If the background 
contains no useful information (e.g., the constant 
background), the analysis field based on the first guess 
may not be satisfactory enough. In such a case, the 

analysis result is considered as a new first guess and 
used to repeat the minimization process. In general, 
several outer loops would give the satisfactory result, 
which has a relatively small cost function. 

 

Fig. 1 Flowchart of variational retrieval scheme. 
Detailed description is given in section 2.4. 
  
3. EVALUATION USING SIMULATED DATA 
 
The advantage of using simulated data is that the truth is 
known and can be compared to the retrieved result. In 
this section, the variational approach is evaluated for 
X-band PRD simulated from real measurements of an 
S-band radar. The S-band measurements came from 
KOUN radar, an experimental polarimetric WSR-88D 
at Norman, Oklahoma. It is assumed that the simulated 
PRD are measured by two CASA IP1 radars (see, e.g., 
Xue et al. 2006), i.e., the radars located at Cyril 
(KCYR) and at Lawton (KLWE), Oklahoma, which are 
located at about 80 and 100 km southwest of the 
KOUN, respectively.  
 
3.1 Simulation of X-band PRD 



On May 8th, 2007, a convective system passed through 
Oklahoma from west to east. PPI images of ZH and ZDR 
as measured by KOUN at 0.5° elevation at 1230 UTC 
are shown in Fig. 2 and the data are used for the 
simulation. Two asterisks located at the southwest part 
of the image denote the locations of KLWE and KCYR. 
Two 20 km × 20 km regions indicated by the two square 
boxes in Fig. 2a are the analysis regions used to test our 
variational algorithm. It is worth noting that these two 
regions include a part of storm core, where the 
attenuation can be notable at X-band frequency.  
 

 

 
Fig. 2 (a) ZH, (b) ZDR measured by KOUN on the 
elevation angle of 0.5° at 1230 UTC on May 8th, 2007. 
Two asterisks southwest of the figure denote locations of 
KLWE (north asterisk) and KCYR (south asterisk), 
respectively. Two solid line boxes indicate the regions 
used for the simulation.     
 

The simulation procedure is described as follows. Take 
the simulation of KCYR measurements for an example. 
Firstly, assume the KCYR makes full 360° azimuth 
scans at 1° increment. The maximum range is 30 km 
and the range resolution is 48 meters. Secondly, 
interpolate KOUN measurements at the lowest elevation 
to each radar range gate of KCYR, ignoring the effect of 
radar elevation differences. Thirdly, interpolated ZH and 
ZDR are used to retrieve the “true” DSD for each radar 
range gate, assuming the contribution completely comes 
from the rain. Next, intrinsic PRD (i.e., ZH, ZDR, KDP, 
AH, and ADP) are calculated based on the “true” DSD. 
After intrinsic PRD are obtained for all range gates, 
attenuated PRD are then calculated along each beam 
path. Finally, random noises are added to the attenuated 
PRD to simulate measurement errors. Measurement 
errors are assumed to be Gaussian random noises with 
standard deviations of 2 dB for ZH (dBZ), 0.2 dB for 
ZDR (dB), and 0.1° km-1 for KDP (° km-1), respectively. 
 
3.2 Retrieval without model error 
In the third step of X-band PRD simulation, the “true” 
DSD is retrieved from two S-band PRD, ZH and ZDR. 
The retrieval follows the procedure described by Cao et 
al. (2008). It is worth noting that the “true” DSD is 
assumed to follow the C-G model, which is the same as 
the DSD model used in the variational retrieval. That is 
to say, when X-band PRD are simulated in this way, 
there is no DSD model error (but the DSD parameters 
are not known before hand) in the variational algorithm. 
In this subsection, we first examine the performance of 
the variational algorithm, using the perfect DSD model.  
The simulated attenuated observations contain 
measurement errors.  
 
In order to do the variational analysis, some 
configurations have been set in the program as follows. 
The analysis region is a 20 km × 20 km square shown 
by the box in Fig. 2. It is covered by 251 × 251 analysis 
points at 80 meter intervals. The initial background is 



set to constant values over the whole analysis domain 
(N*

0 is 3 and Λ is 4). These rough guesses may be far 
from the truth. In the variational scheme, the 
decorrelation scale L is set to be 20 grids, i.e., 1.6 km, 
which is reasonable for the spatial property of a storm. 
Default observation errors are 2 dB for ZH, 0.2 dB for 
ZDR, and 0.1° km-1 for KDP, the same as those of 
simulated observations. Since the background is 
constant, the background error is set as 2, which is 
rather large. 
 
The first experiment is performed for radar KCYR. 
Simulated PRD and retrieved results are shown in Fig. 

3. Three columns from left to right show the images of 
ZH, ZDR, and KDP, respectively. Three rows indicate 
different properties of PRD. The third row denotes the 
“true” PRD, which are simulated with the C-G DSD 
model, i.e., without model error for the variational 
algorithm. The second row represents the simulated 
observations. The attenuations have been applied to the 
simulated observations. Measurement errors have been 
added to them as well. The first row shows analysis 
results using the variational algorithm. The input data of 
the variational algorithm are the simulated PRD shown 
in the second row. 

 

Fig. 3 Simulated PRD and retrieved results for KCYR. Three rows from top to bottom denote the retrieval results, 
the simulated PRD (with attenuation effect) and the truth fields, respectively. Three columns from left to right show 
the ZH, ZDR, and KDP, respectively. True DSDs are assumed to follow C-G DSD model. 
 
As Fig. 3 shows, the variational algorithm 
successfully retrieves ZH, ZDR, and KDP even though 
observed PRD contain attenuations and noises. The 

analysis result match the truth very well except for 
some smoothing. The true PRD are interpolated onto 
the grid points and compared to the analysis results. 



The biases of retrievals with respect to the true PRD 
are 0.11 dB, 0.01 dB and less than 0.001 ° km-1 for 
ZH, ZDR, and KDP, respectively. Accordingly, the 
root-mean-square (rms) errors of retrievals are 0.47 
dB, 0.10 dB and 0.06 ° km-1. These results 
demonstrate the excellent performance of the 
variational algorithm in a perfect condition, i.e., with 
controlled measurement errors and without DSD 
model errors. Moreover, the lookup table method, as 
well as adaptive attenuation correction integrated in 
the forward model, has proven effective in this 
situation. 
 
Similar analysis is performed for simulated PRD of 
KLWE. The results are shown in Fig. 4. In the 

analysis region, there are heavy rains around the 
radar so that the attenuation effect is more severe 
than the KCYR case shown in Fig. 3. This is obvious 
from the second row of Fig. 4. Simulated ZH and ZDR 
have very low values in the far distance. The strong 
attenuation close to the radar can negatively affect 
the minimization process of the cost function because 
the retrieval at far range is sensitive to the attenuation 
correction at near range. However, the variational 
algorithm still gave nearly perfect results. The biases 
of retrievals in Fig. 4 are 0.13 dB, 0.01 dB and 0.006 
° km-1. The rms errors of retrievals are 0.40 dB, 0.09 
dB and 0.07 ° km-1. In the overlapping region of 
KCYR and KLWE radars, Fig. 3 and Fig. 4 show a 
good match for all three PRD.     

 

Fig. 4 The same as Fig. 3 but for KLWE 
 

3.3. Retrieval with model error 
In this section we test our variational retrieval procedure 
in the presence of DSD model error. During the 

simulation, the true DSD is assumed to follow the 
exponential model,   

,           (14) 



instead of the C-G DSD model. There is an evident 
difference between C-G model and exponential model. 
The exponential model is equivalent to a gamma model 
with a shape parameter 0 while the C-G model is the 
gamma model with its shape parameter depending on 
the slope parameter. Since the variational algorithm 
applies the C-G model, simulated X-band PRD using 
exponential model can bring notable model error. 
 
The simulation and retrieval procedures are similar to 
those described in previous subsection. We use the same 
S-band data so that the effect of model error can be 
perceived through the comparison. Corresponding 
results are shown in Fig. 5 for KCYR and in Fig. 6 for 
KLWE. Although the true PRD in Fig. 5 (or Fig. 6) do 
not have much difference with those in Fig. 3 (or Fig. 
4), the intrinsic DSD are different. 

 
It is seen that the retrieval results (first row) still match 
the truth (third row) very well even though DSD model 
error has been introduced. For Fig. 5, the biases of the 
retrievals are 0.09 dB, 0.01 dB, and 0.001°km-1 for ZH, 
ZDR, and KDP, respectively. The rms errors of the 
retrievals are 0.46 dB, 0.10 dB and 0.06 ° km-1. For Fig. 
6, the corresponding biases are 0.16 dB, 0.03 dB, and 
0.006 ° km-1. The corresponding rms errors are 0.46 dB, 
0.11 dB and 0.08 ° km-1. Compared to the biases and 
rms errors in Figs. 3 and 4, there are no fundamental 
difference between them. That is to say, performance of 
the variational algorithm does not notably deteriorate 
with the inclusion of the DSD model error. The 
assumption of C-G DSD model is reasonable and 
practicable for this variational algorithm.  

 

Fig. 5 The same as Fig. 3 but true DSDs are assumed to follow exponential DSD model 



 

Fig. 6 The same as Fig. 5 but for KLWE 
 
4. RETRIEVAL BASED ON REAL DATA 
 
4.1 Real X-band data 
The real data used for the retrieval test were collected 
by the same two CASA radars at an elevation angle of 
2° at 1230 UTC on May 8, 2007. Figs. 7 and 8 show the 
PPI images of ZH, ZDR, KDP, and SNR. The square boxes 
in the figures represent the analysis regions for the two 
radars. There are always some analysis regions, where 
the SNRs are less than 10 dB. The low SNR region is 
larger especially for the analysis region of KLWE (Fig. 
8). Within the low SNR region, the data quality of PRD 
is problematic. In particular, KDP is least reliable among 
three PRD. To mitigate the effect of poor data quality, 
some observational weighs have been introduced in the 
cost function [as shown in Eqs. (1) and (5) and 

described in section 2.4]. The default measurement 
errors are set to 2 dB for ZH(dBZ), 0.4 dB for ZDR(dB), 
and 0.2° km-1 for KDP (° km-1), respectively. The 
measurement errors for ZDR and KDP are twice of those 
assumed in the simulated data case because for real data 
ZDR and KDP usually have more uncertainty than ZH. It 
can be obviously seen that real ZH and ZDR in Figs. 7 and 
8 are much noisier than simulated ZH and ZDR in Figs. 3 
and 4.  
  
4.2 Constant background 
The experiment in this subsection applies the same 
constant background as in the previous case (i.e., N*

0 = 
3 and Λ = 4). The background error is set to 4. The 
retrieved results are shown in Figs. 9 and 10 for KCYR 
and KLWE, respectively. 



 
Fig. 7 (a) ZH, (b) ZDR, (c) KDP, and (d) SNR as measured by KCYR at the elevation angle of 2° at 1230 UTC on May 
8th, 2007. The square box region is the retrieval domain. 

 
Fig. 8 The same as Fig. 7 but data were measured by KLWE.



It is known that polarimetric measurements at low SNR 
(e.g., SNR < 10 dB) are not reliable. Unfortunately, the 
constant background cannot provide any helpful 
information within the region of low SNR. Therefore, 
there exist great uncertainties during the retrieval. 
Moreover, since the attenuation correction process 
makes far range retrieval have a substantial dependence 
on the near range retrieval, the low SNR region could 
actually affect the retrieval almost at the entire region. 
This impact is evident in Figs. 9 and 10, especially for 
ZDR and KDP. The variational algorithm failed in this 

experiment when a constant background is assumed. It 
is reasonable to have such results because the 
variational retrieval is a global optimization system. If 
satisfactory retrieval were desired, good physical 
information (no matter from data or background) of the 
entire region should be provided. Otherwise, incorrect 
retrieval at one point might happen. Its negative effect 
could be spread through spatial correlation and incorrect 
attenuation correction, resulting in potential degradation 
of the entire system.

 
Fig. 9 Retrieved results based on KCYR radar measurements. The background was set to be constant.  

From left to right: (a) ZH, (b) ZDR, (c) KDP. 

 
Fig. 10 The same as Fig. 9 but for the retrieval of KLWE radar measurements. 

 
4.3 Background based on S-band measurements 
The S-band radar measurements can be an additional 
source in providing useful information to compensate 
for the X-band radar measurements of bad data quality. 
The following experiment applies the same example as 
studied in the previous subsection except that the 
background is obtained from the S-band radar 
measurements. In section 2, we have applied KOUN 
measured ZH and ZDR to simulate a “truth” field (Figs. 3 

and 4, the third row). Here we use the simulated “truth” 
field as the background. Generally, the S-band 
measurements should be close to the truth though there 
exist model error and measurement error effects. 
Consequently, using the retrieved DSD parameters as 
the background should have a smaller background error 
than using constant background. In this experiment the 
background error is set to 0.5, representing a moderate 



error. For example, given the same Λ, N*
0 error of 0.5 

introduces 5 dB error for ZH. 
 
The variational retrieval results are shown in Figs. 11 
and 12 for KCYR and KLWE, respectively. As 
expected, the background has compensated for the 
X-band data with low quality so that the performance of 
the variational algorithm was stable and satisfactory. 
Since we do not know the truth, the reasonableness can 
be examined by comparing the results of the two radars 
at the overlapped region. As Figs. 11 and 12 show, the 

major features of all three PRD match very well at the 
overlapped region (refer to overlapped region of two 
square boxes in Fig. 2). In addition, compared to 
background images (Figs. 3 and 4, the third row), Figs. 
11 and 12 show more details. The detail is due to the 
fact that the X-band data have better range resolution 
and have contributed to the retrieval. The detailed part 
of the retrieval also has a good match for two radars. 
This fact convinces the validity of the variational 
retrieval algorithm introduced in this study. 

 
Fig. 11 Retrieved results based on KCYR radar measurements. The background was based on the retrieval of 

S-band radar (KOUN) measurements. From left to right: (a) ZH, (b) ZDR, (c) KDP. 

 
Fig. 12 The same as Fig. 11 but for the retrieval of KLWE radar measurement

5. DISCUSSIONS 
The possible error sources for the variational retrieval 
algorithm may come from following factors.  
 
The major source of the uncertainty comes from the 
data quality. According to the analysis of simulation and 
real data, the PRD of low SNR would deteriorate the 
retrieval remarkably if there were no useful information 
to correct them. At the region where the data quality is 

poor, the background is important. In this study, the 
background based on the S-band radar measurements 
has been applied to solve this problem. Nevertheless, 
The information used to aid the radar data quality can be 
provided from sources such as surface measurements, 
satellite measurements, model predictions, and so on.  
 
The second one is the model error associated with the 
C-G DSD model. The variational algorithm treats the 



two parameters of C-G DSD model as state variables. In 
reality, assumption of the C-G DSD may not be valid 
and is a possible source of error. However, our tests 
using data simulated using simpler exponential DSD 
suggests that the solution is not very sensitive to the 
DSD model assumed. The analysis of integral 
parameters (e.g., ZH, ZDR, and KDP) is robust. The 
experiment using real data also implies this conclusion 
when X-band data quality is good or compensated by a 
reasonable background (e.g., S-band measurements). 
 
The third source is the estimation of error spatial 
structure. The true magnitudes and correlations of the 
error covariance are never exactly known. In this 
algorithm, the spatial structure of background error 
covariance is modeled by a two-dimensional isotropic 
Gaussian function. The error magnitude of each PRD is 
set empirically. Our tests seem to show that the scales 
chosen in this study are appropriate. 
 
Another source of error is the forward model. For the 
variational approach, observations and analysis fields 
are connected through the forward model. In this study, 
the forward model is based on the backscattering theory 
of raindrops. The radar might measure other species, 
such as snow and hail. When these species are presence 
in the radar sampling volumes, their effects have to be 
included in the forward model. 
 
6. CONCLUSSIONS 
 
This study proposed a variational retrieval algorithm 
based on attenuated radar measurements. The C-G DSD 
parameters were treated as the state variables in the 
variational scheme for the first time. Three PRD (ZH, 
ZDR, and KDP) were optimized to correct the attenuation 
and do the retrieval by mitigating the effect of their 
measurement errors. The proposed lookup table method 
was demonstrated effective for the computation of 
complicated forward model and its partial derivatives. 

Preliminary results based on simulated and real PRD 
show the effectiveness of this variational algorithm.  
 
In this case considered here, little or no hail existed at 
the low levels. When hail and/or other ice species are 
present, the problem will be more challenging. 
Additional constraint may be needed for successful 
retrievals. 
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