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God is not so cruel as to create situations described by non-

linear differential equations.

— Edward Sexton

1. INTRODUCTION

There are, quite rightly, growing concerns worldwide about the

dangers, both actual and potential, resulting from the atmo-

spheric release (either accidental or deliberate) of hazardous

materials. This concern is particularly acute in densely popu-

lated urban areas. In addition, there is the spectre that terror-

ist organizations could potentially release hazardous chemical,

biological, radiological, or nuclear (CBRN) materials in a city.

As a consequence, governments and their agencies, sometimes

acting multinationally, are supporting the development of

methodologies to counter and/or to mitigate the consequences

resulting from the release of noxious substances into the urban

environment. The development of such methodologies would

be greatly facilitated by mathematical modeling.

In the case of hazardous material releases in a built-up envi-

ronment, effective mitigation in these settings will require an

understanding of the turbulent transport and diffusion of these

contaminants in an urban environment. Over the past decade,

considerable effort has been expended from the experimental,

empirical, and theoretical points of view to understand the

flow and dispersion in the urban environment on a wide range

of scales from the very large (at the regional and city scales) to

the quite small (at the neighborhood and street, even building,

scales).

Modeling the transport and dispersion of pollutants in the ur-

ban area has been the subject of much recent effort. Hall et

al. (1997) describe an empirical Gaussian puff model that

considers the local interaction of puffs with obstacles. A

semi-empirical urban diagnostic wind model (QUIC-URB)1,

which is used to provide the necessary velocity statistics for

a Lagrangian stochastic model of urban dispersion (QUIC-

PLUME), has been described by Williams et al. (2004). Com-

putational fluid dynamics (CFD) has recently been applied to

the modeling of urban dispersion. There are essentially two

different approaches to the numerical modeling of dispersion

through an urban area using CFD; namely, the Reynolds-

averaged Navier-Stokes (RANS) and large-eddy simulation

(LES) approaches. The application of CFD to turbulent dis-

persion in the urban environment using either RANS or LES
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1QUIC is an acronym for Quick Urban and Industrial Complex.

include Liu and Barth (2002), Baik et al. (2003), Kim and

Baik (2004), Camelli et al. (2005), Coirier et al. (2005),

Hsieh et al. (2007) and Milliez and Carissimo (2007). A hy-

brid approach, which uses a RANS-predicted gridded field of

(building-resolving) wind statistics in an urban area as input

to a three-dimensional Lagrangian stochastic trajectory model

for the prediction of urban dispersion, is described by Wilson

(2007).

The modeling of the dispersion of hazardous materials in ur-

ban areas has focussed primarily on the prediction of the

ensemble-averaged distribution of material (or, mean concen-

tration) from a source. Unfortunately, for many practical

applications, it is necessary to estimate both the mean and

fluctuating values of concentration (the latter of which can

be characterised by moments of concentration of second order

and higher). For example, the statistical properties of con-

centration fluctuations in a dispersing plume are important

to the assessment of risk from the release of certain highly

toxic materials (e.g., industrial chemicals, chemical warfare

agents) in which there is a nonlinear relationship between

concentration and duration of exposure for a given level of

harmful effect. Similarly, short-term concentration fluctua-

tions are very relevant to estimating ignition hazard from the

leakage of flammable gases (e.g., fuel-air mixtures, liquefied

natural gas spills) in which it is necessary to determine the

probability that the instantaneous concentration lies between

the lower and upper flammability limits. Still other impor-

tant applications include the prediction of the probability of

visibility through obscurant clouds and the characterization

of the perception of odours required to evaluate the nuisance

due to malodourous substances.

The development of urban dispersion models for the higher-

order moments of concentration has been hampered by the

lack of comprehensive data sets involving measurements of the

behavior of concentration fluctuations in plumes dispersing in

an urban area. It is only relatively recently that experiments,

providing detailed measurements of concentration fluctuations

in clouds and plumes dispersing through a built-up environ-

ment, have begun to appear. For example, Yee and Biltoft

(2004) describe a series of tracer experiments studying the

statistical properties of concentration fluctuations (e.g., con-

centration variance, concentration probability density func-

tion, various concentration time and length scales of dominant

plume motions) in a plume dispersing through a large array of

building-like obstacles (an experiment referred to as the Mock

Urban Setting Test, or MUST). Gailis and Hill (2006) report

a wide range of concentration statistics and other quantita-

tive descriptors of plume behaviour for tracer dispersion in

a boundary-layer wind-tunnel simulation of the MUST ex-

periment. Yee et al. (2006) provided detailed comparisons
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of concentration statistics in a plume dispersing through the

MUST obstacle array at three different scales; namely, at full-

scale in a field experiment, at 1:50 scale in a wind-tunnel

simulation, and at 1:205 scale in a water-channel simulation.

Finally, Klein et al. (2008) analyzed and compared concen-

tration fluctuation measurements from the Joint Urban 2003

full-scale and wind-tunnel experiments.

With the availability of measurements of concentration fluctu-

ations in a plume dispersing in an urban area, efforts to model

the concentration variance (second-order moment of concen-

tration) for urban plumes have been undertaken recently (e.g.,

Andronopoulos et al., 2002; Hsieh et al., 2007; Wang et al.,

2007; Wang et al., 2008; and, Milliez and Carissimo, 2008).

Following from this earlier work, the objective of this paper

is to develop a full probabilistic model for concentration fluc-

tuations in contaminant clouds or plumes, which can be used

to assess actual or potential hazards associated with releases

of harmful materials in urban areas. A preliminary descrip-

tion of this probabilistic model for urban dispersion will be

described herein, but a more complete exposition is available

in Yee et al. (2009).

2. MODEL FORMULATION

2.1 Overview

The main components of our probabilistic model for urban dis-

persion are exhibited in Fig. 1. There are three components

in the modeling schemata. The first component is the ur-

ban flow component. This component uses Reynolds-averaged

Navier-Stokes (RANS) methodology, with a two-equation k-ǫ

turbulence closure model, to predict the complex and highly

disturbed wind flows in an urban area. This mean flow

and turbulence model provides the spatially-varying veloc-

ity (wind) statistics of the urban flow required by the second

component, which is the urban dispersion component. This

component consists of the turbulent-transport model for the

concentration fluctuations, which involves the solution of the

transport equations for the mean concentration C and con-

centration variance c′2. The third component involves the

specification of a functional form for the concentration proba-

bility density function (PDF). To this purpose, the two lowest-

order moments of concentration (viz., mean concentration and

concentration variance) obtained in the second component

are used to determine the parameters for the concentration

PDF, whose form (clipped-gamma distribution) has been pre-

specified. Now, we proceed to describe each one of these model

components.

2.2 Urban flow component

The RANS approach is used to predict the strongly-disturbed

wind statistics (e.g., mean wind and turbulence quantities) as-

sociated with the complex flow through and above an urban

area, consisting of the arbitrary groupings of buildings in var-

ious configurations that are characteristic of a real cityscape.

In this approach, each of the velocity components is sepa-

rated into two parts: a mean value and a turbulent portion.

Next, the Reynolds method consists of averaging each of the

equations of motion and the continuity equation. Closure of

these equations is obtained using a two-equation k-ǫ turbu-
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Figure 1: Main components of probabilistic model for urban

dispersion.

lence model. This results in a system of nonlinear partial

differential equations governing mass and mean momentum

conservation which can be expressed in Cartesian coordinates

as follows (assuming an incompressible and adiabatic fluid):

Continuity:
∂ūi

∂xi
= 0; (1)

Mean Momentum:

∂ūi

∂t
+

∂ūj ūi

∂xj
= −

∂p̄

∂xi
+ ν

∂2ūi

∂x2
j

−
∂

∂xj
(u′

iu
′

j); (2)

Kinematic Eddy Viscosity:

νt = Cµk2/ǫ; (3)

Turbulence Kinetic Energy:

∂k

∂t
+

∂ūjk

∂xj
=

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

+ Pk − Cǫ0ǫ; (4)

Viscous Dissipation Rate:

∂ǫ

∂t
+

∂ūjǫ

∂xj
=

∂

∂xj

[(

ν +
νt

σǫ

)

∂ǫ

∂xj

]

+
ǫ

k
(Cǫ1Pk − Cǫ2ǫ); (5)

Closure Coefficients:

Cǫ1 = 1.44, Cǫ2 = 1.92, Cµ = 0.09, σk = 1.0. (6)

In Eqs. (1) to (6), a bar over the quantity is used to denote

Reynolds averaging. The Einstein summation convention is

used, which prescribes that if any of the indices is repeated in

a term, a summation over that index is implied. Here, ūi and

u′

i are the mean and fluctuating velocities in the xi-direction,

respectively, with the subscript i = 1, 2, or 3 representing the

streamwise x, cross-stream y, or vertical z directions; xi =

(x, y, z) ≡ x; t is time; ui = (u, v, w); ūi = (ū, v̄, w̄);2 ν is

the kinematic viscosity and p̄ is the kinematic mean pressure

(with p′ used to denote pressure fluctuations).

The tensor u′

iu
′

j appearing in the transport equation for the

mean momentum is the kinematic Reynolds stress tensor,

2with the implied Reynolds decomposition ui = ūi + u′

i
.
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which is modeled here using the Boussinesq eddy-viscosity ap-

proximation which links the Reynolds stresses to the mean

rates of strain (deformation) as follows:

u′

iu
′

j =
2

3
kδij − νt

(

∂ūi

∂xj
+

∂ūj

∂xi

)

, (7)

where νt is the kinematic eddy viscosity, k ≡ 1

2
u′

iu
′

i is the

turbulence kinetic energy (TKE), and δij is the Kronecker

delta function. In Eq. (4) (transport equation for TKE), the

term Pk is the production of k defined as

Pk ≡ −u′

iu
′

j

∂ūi

∂xj
. (8)

Finally, ǫ is the viscous dissipation of TKE whose transport

equation is given by Eq. (5).

Equation (4) represents the standard transport equation for

TKE, except that an additional coefficient Cǫ0 has been in-

corporated in this transport equation to adjust the balance

between the production and dissipation of TKE. If Cǫ0 = 1,

the transport equation for TKE reduces to the standard form.

The coefficient Cǫ0 was introduced because it can be demon-

strated (see later) that a non-unity value for Cǫ0 can provide

improved predictions of the turbulence energy levels in obsta-

cle arrays3 (especially those that exhibit skimming flow over

the buildings, with a concomitant limited penetration of the

flow aloft into the spaces between the buildings). The k-ǫ

model with Cǫ0 6= 1 will be referred to henceforth as the modi-

fied k-ǫ model. When Cǫ0 = 1, the modified k-ǫ model reduces

to the standard k-ǫ model.

A closed-form solution for the modified k-ǫ model can be ob-

tained for the neutral wall shear layer. The solution gives

ū =
u∗

kv
log z + B, k =

u2
∗

√

Cµ
, ǫ =

u3
∗

kvz
, (9)

where u∗ ≡
(

−u′w′
)1/2

is the friction velocity and B is a

constant of integration. For this analytical solution, we find

an implied value for the von Kármán constant, kv, of

k2
v = C

1/2
µ

(

Cǫ2 − Cǫ1Cǫ0

)

σǫ
/

Cǫ0 . (10)

It should be noted that for the standard k-ǫ model, Cǫ0 =

1. Using the closure coefficient values for the standard k-ǫ

model [cf. Eq. (6) and with σǫ = 1.3], kv assumes a value

of 0.43. The experimental values for kv are primarily in the

range 0.41 ± 0.2, so the implied value of kv in the k-ǫ model

is consistent with these measurements. For the case where

Cǫ0 6= 1 (modified k-ǫ model), the coefficient σǫ is assigned

the value σǫ = k2
vCǫ0

/

[C
1/2
µ (Cǫ2 − Cǫ1Cǫ0)] in order to be

consistent with the compatibility condition for flow in a wall

shear layer, given by Eq. (10).4 For the modified k-ǫ model,

we will use Cǫ0 = 0.7. This value for Cǫ0 has been shown

by Wang et al. (2007) to provide improved predictions of

turbulence energy levels in obstacle arrays, in comparison to

those provided by the standard k-ǫ model.

3Previous investigations such as Lien and Yee (2004) and
Coirier et al. (2005) have demonstrated that the standard k-ǫ

turbulence closure scheme (and its variants such as Kato-Launder
and renormalized group (RNG) forms) has a tendency to under-
predict the turbulence energy levels in obstacle arrays.

4Naturally, with Cǫ0 = 1, the closure coefficient σǫ = 1.3 which
is the conventional value used in the standard k-ǫ model.

2.3 Urban dispersion component

The wind statistics of the highly disturbed flow in the urban

environment are available from the urban flow component.

This information can be used to “drive” an urban dispersion

model to predict the transport and diffusion of pollutants (con-

taminants) released in the urban area. The transport equation

for the mean concentration C of the pollutant has the follow-

ing form:

Mean concentration:

∂C

∂t
+

∂ūjC

∂xj
=

∂

∂xj

[

(

Dδjk + Dt
jk

) ∂C

∂xk

]

+ Q, (11)

where D is the molecular kinematic diffusivity of the pollu-

tant in air and Q is the source density distribution for the

contaminant. The transport equation for C has the form of

an advection-diffusion equation, and implicit in this form is

the application of the generalized gradient diffusion hypothe-

sis to model the turbulent concentration fluxes; namely,

u′

jc′ = −Dt
jk

∂C

∂xk
, (12)

where the tensor eddy diffusivity Dt
jk is defined as

Dt
jk = Cs1

k2

ǫ
δjk + Cs2

k3

ǫ2

(

∂ūj

∂xk
+

∂ūk

∂xj

)

. (13)

Here, Cs1 = 0.134 and Cs2 = −0.032 are two model coeffi-

cients (Yoshizawa, 1985).

In addition to the prediction of the mean concentration C, we

predict also the concentration variance c′2 using its transport

equation. The transport equation for c′2 has the following

form:

Concentration variance:

∂c′2

∂t
+

∂(ūjc′2)

∂xj
=

∂

∂xj

(

D
∂c′2

∂xj
− u′

jc′2
)

−2u′

jc′
∂C

∂xj
− ǫc, (14)

where ǫc is the molecular dissipation of c′2. As in the case of

the transport equation for the mean concentration, the tur-

bulent flux of c′2 is modeled using a tensor eddy diffusivity

model as follows:

u′

jc′2 = −Dt
jk

∂c′2

∂xk
, (15)

where Dt
jk is determined in accordance to Eq. (13). The im-

plicit assumption used here is that the concentration variance

diffuses in exactly the same manner as the mean concentra-

tion.

The critical term that requires modeling in the transport

equation of c′2 is the scalar dissipation ǫc. The modeling of

this term determines effectively the rate at which concentra-

tion fluctuations in the dispersing plume are destroyed by the

molecular diffusion. The scalar dissipation ǫc can be modeled

algebraically as ǫc = c′2/td, where td is the dissipation time

scale that is related to the characteristic decay time of concen-

tration fluctuations in the plume. To complete the model, we

need a parameterization for td. The difficulty in modeling td
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Figure 2: Schematic diagram of fluctuating plume illustrating

the effect of the eddy size spectrum in the determination of the

inner and outer scales of plume motion that define the internal

(in-plume mixing) and external (plume meander) concentra-

tion fluctuations.

arises from the fact that it is necessary to distinguish between

the temporal scales responsible for the plume meander (exter-

nal fluctuations) and those responsible for the in-plume mixing

(internal fluctuations), because it is only the latter time scales

that are associated with scalar dissipation. The external fluc-

tuations arising from plume meander are non-dissipative and

do not contribute to the “destruction” of the concentration

variance.

Figure 2 provides a highly-simplified cartoon depicting the

spatial development of a plume from a compact (localized)

source within the framework of a fluctuating plume model

(Yee et al., 1994; Yee and Wilson, 2000). Turbulent eddies

(blobs or lumps of vorticity) with a wide spectrum of scales

(spanning the range from the Kolmogorov microscale ΛK to

the integral scale of turbulence ΛI) exist in the atmosphere.

Consider the action of eddies of length scale le on the plume.

At a given stage in the spatial development of the plume (or,

equivalently, at a fixed downwind distance from the localized

source), turbulent eddies of size le ≫ σr (σr is the width of the

instantaneous plume) result in the bulk meandering of the in-

stantaneous plume. Eddies with size le ≈ σr cause distortion

of the instantaneous plume boundary as clean air packets are

entrained into the body of the plume, resulting in the growth

of σr . Hence, σr corresponds to an inner plume length scale

of turbulent diffusion associated with internal fluctuations. In

view of this, the dissipation time scale td is intimately re-

lated to the time scales associated with the internal plume

fluctuations, as it is the destruction of these fluctuations that

determines the scalar dissipation.

As eddies of size le ≈ σr “break up”, they result in tur-

bulent stirring (or, strain-induced stretching) of the plume

material lines which, in turn, enhances molecular mixing (or,

molecular diffusion of the plume material across the interma-

terial surfaces). The dissipation time td is associated with the

break-up time of these eddies. For a turbulent eddy of size

le = σr (with le < ΛI) and characteristic velocity scale ∆v(le),

the rate for turbulence energy to cascade down to smaller

scales is Πle ∼ ǫ ∼ (∆v(le))2/(le/∆v(le)) = (∆v(le))3/le

since an eddy breaks up on a time scale of its turn-over

time. Consequently, ∆v(le) ∼ (ǫle)1/3. At the scale cor-

responding to the integral length scale of turbulence with

le = ΛI , one expects that ∆v(ΛI ) ∼ (ǫΛI)1/3 = k1/2 so

∆v(le)/∆v(ΛI ) = (le/ΛI )1/3 implying

∆v(le) = k1/2

(

le

ΛI

)1/3

, le = σr ≪ ΛI . (16)

For an inner plume scale σr (σr < ΛI), the average rate of

increase of σr should depend only on ∆v(le) with le = σr

because only turbulent eddies of size le (eddies of size com-

parable to the instantaneous plume width) contribute to the

growth of the instantaneous plume (see Fig. 2), so

dle

dt
∼ ∆v(le) ∼ (ǫle)

1/3, le = σr ≪ ΛI , (17)

where the temporal rate of increase in Eq. (17) is used to de-

note the spatial development of the plume, to be interpreted

in the sense that the time t should be synonymous with x/Up

where Up is the transport speed for the plume dispersion. In-

tegration of Eq. (17) gives le ∼ ǫ1/2t3/2 or, equivalently, on

introducing explicitly the constant of proportionality in this

relationship:

l2e(t) − l2e(0) = Crǫt3, t ≥ 0, (18)

which can be recognized as the Richardson-Obukhov 4/3-law

for plume growth in the relative diffusion framework (recalling

that as the plume width σr increases with t, only those eddies

with size le ≈ σr contribute to its growth). The constant Cr

in Eq. (18) can be identified as Richardson-Obukhov constant,

which we take to have the value 0.55. Finally, we associate

le(0) in Eq. (18) with the initial (finite) size σ0 of the source.

In the regime of plume development where σ0 ≤ le ≡ σr ≪

ΛI , the scalar dissipation can be modeled as ǫc = c′2/td, with

the dissipation time scale td ∝ le/∆v(le), where the dissipa-

tion length scale le and velocity scale ∆v(le) are determined

in accordance to Eqs. (16) and (18), respectively. There is

an explicit association of td(t) at travel time t, with the eddy

break-up time (assumed to be comparable to the eddy turn-

over time) for eddies of size le ≈ σr(t). More specifically,

td ∝ le/∆v(le) =
k

ǫ

(

le

ΛI

)2/3

= tI

(

le

ΛI

)2/3

, le ≪ ΛI , (19)

where tI ≡ k/ǫ is the integral turbulence time scale. Eq. (19)

implies that td ∝ t for the regime of plume development where

σr ≪ ΛI .

Once the instantaneous plume width le = σr exceeds the in-

tegral turbulence scale ΛI , the Richardson-Obukhov 4/3-law

fails owing to the fact that there are no eddies larger than

ΛI . At this stage of plume development, the instantaneous

plume width is distributed over the entire mean-plume width

(viz., σr ≈ σa in Fig. 2) and plume meander no longer con-

tributes as a source of (external) concentration fluctuations

at this stage of plume development. In this regime of plume

development, the dispersion is expected to be similar to Brow-

nian diffusion. This phase of development can be described
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using an eddy diffusivity approximation with σr ∼ (Dtt)1/2

where Dt ≈ Cs1k2/ǫ is the eddy diffusivity. This approxima-

tion for the eddy diffusivity uses only the (dominant) isotropic

part of the tensor diffusivity given by Eq. (13). Furthermore,

the full turbulence energy is available as the relative dispersion

energy in this stage of plume development, so the characteris-

tic velocity scale for concentration fluctuations is ∆v = k1/2

for σr ≫ ΛI . Consequently, in this regime, the dissipation

time scale is given by

td ∝ σr/∆v =
(Dtt)1/2

k1/2
, σr ≫ ΛI . (20)

A model for scalar dissipation that is valid in the various

regimes of plume development can be obtained by blending

the results of Eqs. (19) and (20) to span all scales of motion.

To this purpose, the velocity scale ∆v(Λd) for concentration

fluctuations is formulated as follows:

∆v(Λd) = k1/2 min

(

(

Λd

ΛI

)1/3

, 1

)

, Λd ≥ σ0. (21)

Here, Λd is a dissipation length scale for concentration fluctu-

ations which, for σr ≪ ΛI was identified with le in Eq. (19)

with a temporal (or, equivalently, spatial) development given

by Eq. (18), and for σr ≫ ΛI was identified with (Dtt)1/2 in

Eq. (20). These two estimates for Λd (valid in different regimes

of plume development) can be combined, using a blending

function that is similar to one proposed by Cassiani et al.

(2005) for use with a micromixing time scale, to give the fol-

lowing generalized formulation for Λd:

Λ2
d =

l2e
1 +

(

l2e − σ2
0

)

/
(

σ2
0

+ c1Dtt
) , (22)

where le is determined in accordance to Eq. (18) and c1 is a

closure constant. This blending (interpolation) formula sat-

isfies the prescribed features of Λd at small and large travel

times: namely, (1) Λd → σ0 as t → 0+; (2) for travel times

such that le ≪ (c1Dtt)1/2 (inertial subrange time scales),

Λd ≈ le corresponding to the phase of plume development

where meandering is important; and, (3) for large travel times

such that le ≫ (c1Dtt)1/2, Λd ≈ (c1Dtt)1/2 corresponding to

the turbulent diffusive phase of plume development where the

dispersion can be described as a Brownian diffusion. Given

Eqs. (21) and (22), the scalar dissipation ǫc is modeled as

ǫc = c2
∆v(Λd)

Λd
c′2, (23)

where c2 is a closure constant.

The closure constants in Eqs. (22) and (23) assume the follow-

ing values: c1 = 0.37 and c2 = 1.1. These closure constants

were chosen to provide reasonable agreement with data for

a plume dispersing in an idealized obstacle array (which will

be described later). More specifically, these closure constants

were chosen to be consistent with the decay of the plume cen-

terline concentration variance with increasing distance from

the source. Furthermore, it has been found that the values of

these closure constants only determine the level and rate of

decay of the concentration variance with downwind distance

along the plume centerline. They do not mould the complex

shape of the profiles of concentration variance in the crosswind

direction.

2.4 Concentration probability density function component

The first two components of the model (described above) allow

the prediction of the mean concentration C and concentration

variance c′2 for a plume dispersing in an urban area. However,

these two concentration statistics do not provide an adequate

description of the plume concentration fluctuation statistics,

without also specifying the form of the concentration PDF. To

this purpose, we propose a model for the one-point concentra-

tion PDF f(χ;x) at a receptor point x ≡ (x, y, z):

f(χ;x) dχ ≡ Pr
{

χ ≤ c(x) < χ + dχ
}

, (24)

where Pr{ · } denotes the “probability that”, c is the instan-

taneous concentration, and χ is a sample space values for c.

Yee and Chan (1997) proposed a left-shifted clipped-gamma

distribution for the concentration PDF for plumes dispersing

in an unobstructed (open) terrain. In this model, the concen-

tration PDF assumes the following form:

f(χ;x) =

(

χ + λ

s

)k∗
−1 exp

(

−(χ + λ)/s
)

sΓ(k∗)

+(1 − γ)δ(χ), (25)

with k∗ = k∗(x) > 0, s = s(x) > 0, λ = λ(x) ≥ 0,

γ = γ(x) ∈ [0, 1]. Furthermore, Γ(x) is the gamma func-

tion, δ(x) is the Dirac delta function and the range for χ is

0 ≤ χ < ∞. The concentration PDF in Eq. (25) is composed

of a mixed fluid part (first term on right-hand side of equa-

tion) that results from in-plume mixing of eddies that contain

the scalar contaminant, and an unmixed ambient fluid part

(second term on right-hand side of equation) that is produced

by plume meandering producing intermittent periods of zero

concentration for a fraction of time (1 − γ). Alternatively,

γ ≡ Pr{c(x) > 0} is the intermittency factor that determines

the probability of observing a non-zero instantaneous concen-

tration c at x.

The concentration PDF in Eq. (25) is completely determined

by four parameters: namely, γ, k∗, s and λ. However, only

three of these parameters are independent, owing to the fact

that the intermittency factor γ is determined uniquely as the

area remaining under the gamma PDF curve for χ > 0 after

a left-shift of χ by the amount λ ≥ 0; hence,

γ ≡ γ(k∗, s, λ) =

∫

∞

λ

(χ

s

)k∗
−1 exp(−χ/s)

sΓ(k∗)
dχ

=

∫

∞

0

(

χ + λ

s

)k∗
−1 exp(−(χ + λ)/s)

sΓ(k∗)
dχ

=
Γ(k∗;λ/s)

Γ(k∗)
, (26)

where Γ(ν; x) denotes the complementary incomplete gamma

function.

To use the clipped-gamma distribution for our current appli-

cation, we need a particular form that is completely specified

by two parameters, whose values can be determined using the

predicted values for the mean concentration and concentration

variance. To this objective, Yee and Chan (1997) imposed

an additional constraint on the form of the clipped-gamma

distribution; namely, they used a comprehensive data set of

measurements of plume concentration fluctuations in open ter-

rain to formulate the following simple relationship between
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the normalized mean-square concentration and the plume in-

termittency:

γ = min

(

1,
3

(c/C)2

)

. (27)

The model concentration PDF parameters k∗, s and λ in

Eq. (25) can be obtained by application of the method of mo-

ments applied to the normalized concentration c/C. Using the

method based on moments for c/C, the identification of the

parameters k∗, s and λ requires the solution of the following

system of transcendental equations:

1

s
=

(

−
λ

s
+ k∗

)

γ +
1

Γ(k∗)

(

λ

s

)k∗

e−λ/s; (28)

( c

C

)2

=

(

(λ/s)γ + (−λ/s + k∗ + 1)/s
)

[

(−λ/s + k∗)γ + (λ/s)k∗e−λ/s/Γ(k∗)
]2

; (29)

and

γ = min

(

1, 3

/

( c

C

)2
)

=
Γ(k∗;λ/s)

Γ(k∗)
. (30)

Consequently, for a specified value of (c/C)2, Eqs. (29) and

(30) need to be solved for k∗ and λ/s. Next, these values can

then be subsequently substituted into Eq. (28) to obtain s,

after which the value of λ can be obtained. Note that even

though the clipped-gamma distribution involves three param-

eters (s, k∗ and λ), only k∗ and λ/s are independent because

s can be expressed explicitly in terms of k∗ and λ/s by virtue

of Eq. (28). In consequence, the clipped-gamma distribution

is actually only a two-parameter distribution.

The solution of these equations for k∗, s and λ as a function

of (c/C)2 is exhibited in Fig. 3. Note that k∗ is a monotoni-

cally decreasing function of normalized mean-squared concen-

tration, whereas s and λ are both monotonically increasing

functions of the normalized mean-squared concentration. The

parameters shown in Fig. 3 define the clipped-gamma proba-

bility law for the normalized concentration, χ/C [viz., deter-

mine the functional form for the clipped-gamma distribution

f(χ/C)].

The clipped-gamma PDF of Eq. (25) gives the following ex-

plicit form for the cumulative distribution function (CDF) for

the concentration (at the receptor point x):

F (χ;x) ≡ Pr
{

c(x) ≤ χ
}

=

∫ χ

0−
f(χ′;x) dχ′

= 1 −
Γ(k∗; (χ + λ)/s)

Γ(k∗)
. (31)

The complement of the concentration CDF [or, exceedance

distribution function (EDF) for concentration] is simply
(

1 −

F (χ;x)
)

≡ Pr
{

c(x) > χ
}

.

3. APPLICATION TO IDEALIZED OBSTACLE ARRAY

In this section, we evaluate the predictive accuracy of the prob-

abilistic model for urban dispersion by presenting the results

of a detailed comparison of the flow and turbulent dispersion

between a comprehensive water-channel experiment and the

model predictions.
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Figure 3: Dependence of the parameters (k∗, s, and λ) of a

clipped-gamma distribution on the normalized mean-square

concentration 〈(c/C)2〉 ≡ (c/C)2, where C is the mean con-

centration.

3.1 Water-channel experiment

The water-channel experiment is fully described in Hilderman

and Chong (2007), and only the important details of the exper-

iment will be presented here. The experiment, which was com-

missioned by Defence R&D Canada – Suffield, was conducted

in the boundary-layer water channel at Coanda Research
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x y 

Figure 4: A photograph showing the geometry of the regular

and aligned array of cubes placed in a boundary-layer wa-

ter channel at Coanda Research & Development Corporation

(Burnaby, British Columbia, Canada). The Cartesian coordi-

nate system used is also shown. Here, x is in the streamwise

direction and y is in the spanwise direction.

& Development Corporation (Burnaby, British Columbia,

Canada). The water channel had a working section of 10 m

length, 1.5 m width and 0.9 m height.

The water-channel experiment simulated a neutrally-stratified

atmospheric boundary-layer flow over a regular array of three-

dimensional (3-D) obstacles. The 3-D obstacle array is shown

in Fig. 4. The array consists of sharp-edged cubes with a

characteristic dimension L = W = H = 31.75 mm, where L,

W and H are the length, width and height of the obstacles.

A total of 256 cubes was placed in an aligned array consisting

of 16 rows of 16 cubes. The array filled the entire spanwise

dimension (width) of the water channel. The streamwise and

spanwise face-to-face spacings between cubes was H, giving

frontal and plan area indices (λf and λp, respectively) of 0.25.

The building array was immersed in a simulated neutral atmo-

spheric boundary layer that was created in the water channel

using the combination of a “turbulence” grid made of square

bars 19 mm × 19 mm placed at the start of the channel inlet

and a sawtooth fence, with a base width equal to that of the

channel and a height of 70 mm, placed 200 mm downstream of

the square bar array. The boundary-layer thickness, δ, taken

to be the height where the mean wind speed reached 99% of

the free-stream value, was found to be 275 mm. At this point,

the mean wind speed uδ was 0.375 m s−1. The friction ve-

locity u∗ determined from measurements of the shear stress in

the constant stress layer near the surface of the upstream fetch

was 0.0255 m s−1, giving u∗/uδ = 0.068 for the water-channel

simulations. A least-squares fit of the usual log-law profile for

the mean wind speed in a regular rough-wall boundary layer,

u/u∗ = kv log
[

(z−d)/z0

]

, where z0 is the roughness length, d

is the zero-plane displacement, and kv ≈ 0.4 is von Kármán’s

constant gave the following results: z0 = 0.35 ± 0.05 mm,

assuming a zero-plane displacement d of 2.8 mm (using the

common rule of thumb that d should be approximately 70% of

the height of the roughness elements). The reference Reynolds

Ub 

H 

H 

z y 

x d 

16 rows in total 
H 

H 
source 

H 

Figure 5: Geometry of the regular and aligned array of cubes

in the water channel depicting the eighth column of the ob-

stacles. The location of the ground-level source is marked by

d.

number of the flow was approximately ReH = 12, 005 (based

on H and the free-stream velocity Ub = 0.38 m s−1).

Measurements of the velocity components were made using

a 4-beam, 2-component fibre-optic laser Doppler velocimeter

(LDV). The velocity time series were sampled for 500 s. This

sampling time was sufficiently long to give statistically con-

verged estimates for the various velocity statistics. For the

water-channel simulations of dispersion in the obstacle array,

a ground-level point source consisting of a vertical stainless

steel tube (2.8 mm I.D. and 3.1 mm O.D.) was used, with

the outlet of the tube placed just above the wire mesh that

served as the ground roughness elements. The source emit-

ted a sodium fluorescein dye tracer at a constant flow rate of

12×10−3 l min−1 with low discharge momentum (weak verti-

cal jet). The source was located between the first and second

rows of obstacles in the spanwise-oriented street canyon at a

position lying at the intersection of the first row and eighth col-

umn of obstacles (where the rows are numbered in increasing

order in the streamwise direction from the leading (windward)

edge of the array and the columns are numbered in increasing

order in the spanwise direction from the right-hand side of the

array when looking in the flow direction – see Fig. 4). This

source location will be referred to as location d as shown in

Fig. 5. The instantaneous concentration field in the dispersing

dye plume was measured using the laser-induced fluorescence

(LIF) technique.

3.2 Velocity statistics

For the simulations of the flow and dispersion in the obsta-

cle array, the model domain used spanned −15 ≤ x/H ≤ 46

with the windward face of the first row of cubes placed at

x/H = 0. The spanwise extent of the domain was 18H

(spanning 9 columns of cubes in the spanwise direction with

−9 ≤ y/H ≤ 9) and the domain height was 11H (0 ≤

z/H ≤ 11), where z is the vertical coordinate direction mea-

sured from ground level. The vertical x-z center plane at

y/H = 0 contained the ground-level source at location d (see

Fig. 5). In this coordinate system, the source at d is located

at xs/H ≡ (xs, ys, zs)/H = (1.5, 0, 0).

The model domain was discretized with a non-uniform grid of

245×149×48 control volumes (in the streamwise, spanwise and

vertical directions, respectively). The grid lines were preferen-

tially concentrated near the solid surfaces (e.g., ground, walls,

rooftops) where the flow property gradients are expected to

be greatest, with the spacing between the grid lines gently
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Figure 6: Sampling locations for velocity measurements in a

unit cell of the cubic array. Each unit cell of the array was

2H × 2H, with H = 31.75 mm.

stretched with increasing distance from the solid surfaces in

the spanwise and vertical directions. The grid lines were uni-

formly spaced in the streamwise direction, except that the grid

mesh was refined in the street canyon between the first and

second rows of obstacles in order to resolve the diameter of

the tracer source used in the water-channel experiments.

Detailed measurements of vertical velocity profiles were made

at 12 locations in two unit cells of the cubic array. The two

unit cells were taken at two streamwise locations along the

eighth column of cubes (near the centerline of the array). In

the aligned array of cubes shown in Fig. 4, a unit cell of the

array occupies a plan area of 2H×2H in the x-y plane as shown

in Fig. 6. In this figure, the 12 locations for the measurements

of the velocity profiles are labelled A through K. Note that the

cubical obstacle occupies the upper-left quadrant of the unit

cell (with location A situated at the center of this obstacle).

The location of the cubical obstacle is marked by the shaded

region shown in Fig. 6. Measurements of vertical profiles of

the velocity were made in the first (cell 1) and sixth (cell 6)

cells in the streamwise direction along the eighth column of

cubes in the array.

Figure 7 compares model predicted vertical profiles of the

mean streamwise velocity ū (normalized by the free-stream

velocity Ub) at two locations C and G in cells 1 and 6. The

mean streamwise velocity profiles corresponding to locations

C and G in cell 1 are located in the adjustment zone, where

the undisturbed upstream flow is adjusting to the presence of

the urban canopy. In contrast, the mean streamwise veloc-

ity profiles corresponding to locations C and G in cell 6 are

located in the equilibrium zone, where the mean velocity ap-

pears to have reached streamwise equilibrium (viz., the mean

streamwise velocity is fully developed). At all these locations,

it is seen that the mean streamwise velocity is well predicted

by the model. In particular, a very strong shear layer forms

at the top of the urban canopy, whose signature is revealed

by the inflection point in ū(z) at or near the obstacle height

H. Note that the large values of mean shear ∂ū/∂z just above
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Figure 7: Comparison of measured and predicted vertical pro-

files of mean streamwise velocity, ū1 ≡ ū, (normalized by Ub)

at locations C and G in cells 1 and 6. Two different configu-

rations of the LDV have been used to measure ū (namely, the

u-v and u-w configurations).

the building height are predicted well by the model. Further-

more, at location C, the magnitude of the reverse velocity in

the spanwise-oriented street canyon is correctly reproduced by

the model predictions.

Figure 8 presents vertical profiles of turbulence kinetic energy,

k, at the same locations as the mean streamwise velocity pro-

files displayed in Fig. 7. The model predictions shown here

were obtained with the standard k-ǫ model with Cǫ0 = 1 and

the modified k-ǫ model with Cǫ0 = 0.7.5 Generally speak-

ing, the turbulence energy levels in the roughness sublayer

(z/H < 2) are under-predicted by the standard k-ǫ model.

The modified k-ǫ model improves the prediction of the turbu-

lence energy levels for z/H < 2. In particular, note that the

observed large peak in TKE at location C in cell 1 (which is

just above the first building rooftop) is well predicted using the

modified k-ǫ model, whereas it is significantly under-predicted

(by about a factor of two) using the standard k-ǫ model. Fur-

thermore, the position and magnitude of the prominent nose

in the k-profile at location C in cell 6 (which lies just above

the street canyon top in the equilibrium zone) is largely re-

produced by the modified k-ǫ model, but predicted less well

by the standard k-ǫ model. The peak value of k at location C

5It should be noted that the predictions of the mean stream-

wise velocity obtained using the standard and modified k-ǫ models
were virtually identical. Only the predictions of turbulence energy
levels differed between the two models.
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Figure 8: Comparison of measured and predicted vertical pro-

files of turbulence kinetic energy, k, (normalized by U2
b ) at

locations C and G in cells 1 and 6 (for Cǫ0 = 1 and 0.7).

(which occurs at or near the canopy top at z/H ≈ 1) decreases

monotonically in the streamwise direction from the first street

canyon (cell 1) and reaches a near constant value at the sixth

street canyon (cell 6). This feature in the behaviour of the

TKE is correctly captured by the modified k-ǫ model.

3.3 Concentration statistics

Figure 9 displays predictions for crosswind profiles of the mean

concentration C (normalized by the source concentration Cs)

at half-canopy height (z/H = 0.5) at five alongwind locations

(x − xs)/H. These predictions were obtained using the wind

statistics derived from the RANS approach with a standard

k-ǫ turbulence closure model. The corresponding experimen-

tal measurements (open circles) are also shown in the figure

for comparison. In general, the predictions for the mean con-

centration show good agreement with the measurements at all

the locations, although they are seen to over-predict slightly

the mean-plume centerline concentration (at y/H = 0), at

the farthest available x-station. Furthermore, the peak mean

concentration is over-predicted by as much as about 20% at

the farthest downwind station. Note that the model under-

predicts the crosswind spread of the plume at alongwind loca-

tions further from the source (i.e., for (x− xs)/H & 6), which

is consistent with the slight over-prediction of the mean con-

centration at these locations. Nevertheless, it can be inferred

from the results of Fig. 9 that the horizontal spread rate of the

mean plume and the rate of decay of the mean-plume center-

line concentration, as a function of downwind distance from

the source, is predicted quite well by the model.
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Figure 9: Crosswind profile of the normalized mean concen-

tration, C/Cs, measured at various alongwind positions at

half-canopy height (z/H = 0.5). The plot also includes a

model prediction for the normalized mean concentration (solid

line). Here, Cs is the source concentration.

Crosswind profiles of the concentration standard deviation,

σc ≡ (c′2)
1/2

, normalized by the source concentration Cs, are

exhibited in Fig. 10 at the same alongwind locations as shown

in Fig. 9. The model predictions (solid line) for σc are in good

conformance with the experimental data (open circles) over

the available downstream range. The lateral cross-sections of

σc are similar to the C-profiles, except that they are broader

and the ratio of the peak value to the centerline value of σc

is larger. The concentration standard deviation exhibits a

distinctive bimodal structure with a local minimum at the cen-

terline. These general features of σc are captured adequately

by the model, although the crosswind dispersion of the con-

centration standard deviation profiles are under-predicted by

the model. The presence of off-centerline peaks in the cross-

wind profiles for the concentration standard deviation (or,

equivalently, the concentration variance) illustrate the role of

production in molding the shape of σc. In particular, the

maximum in σc (or, equivalently, c′2) occurs roughly at the in-

flection point in the corresponding crosswind C-profile, which
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Figure 10: Crosswind profile of the normalized concentration

standard deviation, σc/Cs, measured at various alongwind

positions at half-canopy height (z/H = 0.5). The plot also

includes a model prediction for the normalized concentration

standard deviation (solid line). Here, σc ≡ (c′2)1/2 and Cs is

the source concentration.

is the position (approximately or better) of maximum produc-

tion (≡ −u′

ic
′∂C/∂xi) of c′2 in a lateral cross-section.

3.4 Concentration PDF

Given predictions of C and c′2, the prediction of probability of

exceedances of critical concentration levels can be obtained us-

ing a pre-specified form of the concentration PDF. Earlier, we

suggested the application of the clipped-gamma PDF for the

concentration since the parameters for this PDF are uniquely

defined given the information embodied in C and c′2. To this

end, we compare the modeled and measured cumulative and

exceedance probability distributions.

Figure 11 exhibits comparisons of the predicted and observed

evolution of the CDF of χ/C along the mean-plume centerline

(y/σy = 0, where σy is the mean-plume crosswind dispersion)

at half-canopy height (z/H = 0.5). Concentration CDFs at

five different downwind distances from the source, spanning

the range 2 ≤ (x − xs)/H ≤ 16, are displayed in Fig. 11. The

model predictions for the clipped-gamma concentration CDF
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Figure 11: Cumulative distribution function (CDF), F (χ/C),

of the normalized concentration measured at various along-

wind positions from the source along the mean-plume cen-

terline (y/σy = 0) and at half-canopy height (z/H = 0.5).

The plot also includes a prediction for the concentration CDF

provided by the clipped-gamma model (solid line), which was

generated using the predicted normalized mean-square con-

centration at each plume location.

were obtained by using the predicted values of C and c′2 at

these locations to determine the mean-square concentration

(c/C)2 ≡ c′2/C2 + 1, which is then used to determine the

parameters k∗, s and λ for the model distribution (see Fig. 3).

Generally, it can be seen that the clipped-gamma distribution

is in good conformance with the measured concentration CDF.

This suggests that the dynamics associated with the evolution

of the fluctuating plume in the alongwind direction are being

described correctly by the model.

Because it is the prediction of the likelihood of extreme events

that is important in the hazard assessment of toxic gas re-

leases, it is important to examine the upper tail of the con-

centration distribution. To that purpose, we exhibit in Fig. 12

the exceedance distribution functions, 1 − F (χ/C), for the

same plume locations shown in Fig. 11 for dispersion in the

array of cubes. The exceedance distribution functions have

been plotted on a logarithmic scale in order to emphasize the

upper tails. Figure 12 indicates that the clipped-gamma dis-
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(e) (x − xs)/H = 16

Figure 12: Exceedance distribution function (EDF), 1 −

F (χ/C), of the normalized concentration measured at various

alongwind positions from the source along the mean-plume

centerline (y/σy = 0) and at half-canopy height (z/H = 0.5).

The plot also includes a prediction for the concentration EDF

provided by the clipped-gamma model (solid line), which was

generated using the predicted normalized mean-square con-

centration at each plume location.

tribution predicts generally the upper tail very well (except

perhaps at (x − xs)/H = 10 where the model concentration

EDF is seen under-predict the probability of occurrence of

large concentrations).

4. CONCLUSIONS

The formulation of a probabilistic model for prediction of the

statistical characteristics of concentration fluctuations in pol-

lutant plumes dispersing in an urban area is presented. This

model has been derived with an emphasis towards simplic-

ity and robustness. The principal motivation for development

of such a model arises from the recognition that concentration

fluctuations are critical for the proper assessment of flammable

and toxic gases and from increased concerns about releases of

these noxious substances in (built-up) urban areas where the

population is greatest. The probabilistic model developed here

allows actual or potential hazards resulting from the release of

flammable, toxic, or malodourous substances to be quantified

by probabilities (e.g., the probability that the concentration

of a toxic material exceeds a critical intoxication level, or the

probability that a flammable gas with given lower and upper

flammability limits is ignitable).

A knowledge of C and c′2 for the concentration probability

law does not allow one in general to determine the probability

law (viz., it may require a knowledge of more than simply the

first two moments of concentration to allow the determina-

tion of the probability law for concentration). In view of this,

it is perhaps surprising that using only the two lowest-order

concentration moments, in conjunction with the assumption

that the concentration probability law has a clipped-gamma

form, allowed very good predictions to be obtained for the

concentration PDF for the example used in this paper. These

good predictions might be extremely fortuitous. Fortunately,

it turns out that this is not the case.

Some recent work (Yee, 2008a; Yee, 2008b) has shown that

plume concentration data measured in both open-terrain and

built-up environments exhibit a remarkably robust feature;

namely, the observed collapse of the third- and fourth-order

normalized concentration moments on the second-order nor-

malized concentration moment. More surprising, the collapse

of the various concentration moments in a built-up environ-

ment was found to be exactly the same as that observed in

an unobstructed (open-terrain) environment. This remark-

able collapse suggests that the concentration PDF of plumes

dispersing in either a built-up or open-terrain environment can

be described adequately by at most two parameters (namely,

a location parameter which can be chosen to be the mean

concentration and a scale parameter which can be chosen to

be the root-mean-square concentration or, equivalently, the

concentration standard deviation). Furthermore, the two-

parameter probability law of concentration is universal, valid

for dispersion in all forms of environments [e.g. arbitrary

built-up (urban) environments, level unobstructed (rural) en-

vironments, etc.]. Finally, the general shape of the observed

concentration probability distribution was found to be well

approximated using the clipped-gamma distribution.

The implication of the work of Yee (2008a,b) is that the

two-parameter clipped-gamma probability law of concentra-

tion can be used, in conjunction with predictive models for

the mean concentration and concentration variance in urban

plumes, to provide a prognostic probabilistic model for the

assessment of hazards (toxicity, flammability, malodour), re-

sulting from the dispersion of pollutant plumes in built-up

areas. A full realization of this implication for probabilistic

modeling of concentration fluctuations in plumes dispersing

in an urban environment has been realized in this paper.

The probabilistic modeling scheme developed here is simple

enough to provide a practical option for modeling concentra-

tion fluctuations in plumes dispersing through an urban area.

Future work with the current model will involve coupling it

with routine prognostic mesoscale meteorological models to

provide an operational prediction of concentration fluctuations

for releases of toxic materials in the urban environment and

beyond. This will allow practical probabilistic assessments of

risk associated with hazardous substance releases in an urban

area.
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