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Advanced data assimilation

e 4D-Var

v ltis a non-sequential data assimilation technidjttéyg observations in
the whole assimilation window (optimal trajectory).

v ltis applied in many operational centers.

v" However, there are disadvantages compared with Ee&ttique (TL
and AD are difficult to code; background error coaace is evolved
only within assimilation window and it is usualltatic at analysis time).

* Ensemble Kalman filter
v ltis a hot topic in recent years, and researclvshgromising results.

v Itis easy to design and code, and can includephggical process as
needed.

v" One of the prominent advantages is its flow-depenbackground error
covariance.
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Will EnKF replace 4D-Var in
operational application?

¢ Although EnKF is promising in research, no evidence shows it
can definitely outperform 4D-Var in operational. It has its own
disadvantage, such as sampling errors.

« Variational data assimilation is well established in operational,
it is difficult to be replaced, politically and technically.
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How should we do?

* My perspective is

v' to include the flow-dependent background error covariance
from ensemble forecast into 4D-Var, without significant
change of the existing setup of operational 4D-Var system,

v to use the ensemble perturbation matrix in the 4D-Var
formulation and avoid tangent linear and adjoint model
development in the 4D-Var setup.
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End4D-Var
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Some characteristics of En4D-Var

* En4D-Var uses the flow-dependent B matrix from
ensemble forecast.

* It avoids tangent linear and adjoint models in its
formulation.

* It couples incremental approach with preconditigni
using ensemble perturbation matrix.

» But sampling errors are introduced to En4D-Var.

iNCAR Mesoscale and Microscale Meteorological Division 01/14/2009

Proof-of-concept test with shallow water model

»
=
Ew
2 .
i
£
i
B .
R ] Twow o oW om . 1
T dhours} Time {houre}
Evolution of domain-average RMSE
ﬁNCAR Mesoscale and Microscale Meteorological Division 01/14/2009

WRF En4D-Var

* The success of En4D-Var with simple models
gives us great motivations to implement the
technique using WRF model.

» The biggest challenge for En4D-Var in real
atmospheric model (e.g. WRF) is how to deal
with sampling errors.
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Localization in ensemble-based
data assimilation

« Why
» Imperfect ensemble => sampling errors => analygiseiment noise
» Ensemble dimension is far less than model dimersion
B matrix rank is restricted to the low-dimensiot-space =>
deficient rank and underdetermined problem

* How
» local truncation (Houtekamer and Mitchell 1998)
»  hybrid scheme (Hamill and Snyder 2001, Lorenc 2003)

»  Schur product (Houtekamer and Mitchell 2001, Lore®@2, Buehner
2005)
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WRF En4D-Var

* We conduct horizontal and vertical
localizations using Schur operator to deal with
spatial sampling errors, similar to the method
in EnKF localizations.

* We empirically put the analysis time at the mid
of assimilation window to alleviate the
temporal sampling errors.
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Flow Chart for WRI-En4DVal
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En4D-Var OSSE design
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Test with the “blizzard of 2000” case: 24-25 January 2000
* Assimilation window: 6 hours

Cycling: From 0900 UCT 24 to 1500 UTC 25 Januare 2000
* Observations are simulated with real positions
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Single observation test
('single T observation at 850hpa at 24-12Z Jan. )

WRF-Var En4D-Var without localization En4D-Var wi  th localization

Increments of wind vector and temperature at 1000hpa
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Cross-section of temperature increment

Vertical levels
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Blue Circle-line: analysisincrement without localization
Red Crossline: analysisincrement with localization
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RMSE at different analysis time
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Analysisat the beginning (pink), mid (red), and end (blue) of assimilation window
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Analysis error at 300hpa
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Analysis error at 1000hpa
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Vertical bias at 24-127/25-00Z/25-127

Vertical RMSE at 24-127/25-00Z2/25-127
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Domain average RMSE in cycling Summary
—a— * WRF En4D-Var shows flow-dependant structure in its analysis

Yl RAGE firs)
. -

=¥ o .

A

m e w0 ow mom o ow m
ax -

B o
b-{ id}
2, =
] l

2 /
£, /

E i
H N |
E—i ™

.
=i H ;t H @ o 2 w18 z'} o o3 om o 12

Black: CTL Blue: En3DVar Red: En4DVar

RNCAR

Mesoscale and Microscale Meteorological Division 01/14/2009

increments.

¢ The localization with Schur operator can greatly reduce the
analysis noise.

« The WRF En4D-Var optimal analysis time is at the middle
(instead of the beginning) of assimilation window.

e OSSEs indicate that the analysis error using WRF En4D-Var is
much less than that of control experiment.

 WRF En4D-Var gets a better analysis comparing with En3D-
Var cycling.

¢ Comparison of WRF En4D-Var with WRF 4D-Var is under way.
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Thank you!
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