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1. INTRODUCTION  
 
 The intentional or unintentional release of a 

harmful atmospheric contaminant is a potentially 
devastating threat to homeland and defense security. 
Accurate identification of the source location and 
intensity is essential to predicting subsequent transport 
and dispersion of the contaminant. Insufficient spatial 
and temporal resolution of the available contaminant 
and wind-field observations make source 
characterization extremely difficult (Allen et al. 2006) 
when using typical networks of fixed sensors. Given 
sufficient observational data, however, the problem is 
feasible as shown by Long et al. (2008).  That study 
demonstrated the use of the Gaussian puff equation as 
the dispersion model in identical twin numerical 
experiments applying a Genetic Algorithm (GA) to back 
calculate the required source characteristics solely from 
the observations on grids ranging from 8×8 to 2×2 of 
fixed location concentration sensors. It is not practical, 
however, to cover all societally important regions with a 
dense enough fixed sensor network to make that 
method practical. Therefore we study an alternative, the 
use of a mobile sensor system. 
The coupling of concentration observations to 
dispersion model forecasts by a GA proved to be a 
fruitful way to determine both source characteristics and 
those of the transport and dispersion process. Using the 
Gaussian plume equation as the dispersion model, Allen 
et al. (2007a) applied a genetic algorithm to identify four 
parameters: source location (x,y), source strength, and 
wind direction. Even when noise was added to the 
concentration data to simulate the non-Gaussian nature 
of instantaneous turbulent dispersion, the results remain 
excellent for sensor grids of 8×8 and larger. That grid 
size presumes that the wind direction is unknown and 
requires receptors in all possible directions from a 
potential source. An earlier version of the model was 
validated with circular and spiral source array synthetic 
data configurations before being applied  
to field test data from Logan, Utah (Haupt 2005) then 
was validated in the context of superimposed noise 
(Haupt et al. 2006). Allen et al. (2007b) extended that 
analysis with a more sophisticated dispersion model, 
SCIPUFF and  correctly identified the time of release, 
source location, and apportioned contaminant 
contributions from multiple sources, even for 
concentration observations contaminated with moderate 
amounts of white noise as well as testing the model on 
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field test data (Dipole Pride 26). Long et al. (2008) 
showed that the method can be extended to retrieve a 
total of seven parameters required for concentration 
field modeling: source strength, source location (x, y), 
puff centerline effective height, release time, 
transporting wind speed, and transporting wind direction.  
All of these studies required numerous fixed sensors to 
achieve successful source and meteorological 
characterizations.  Deployment of fixed sensors at the 
required densities is not practical in many situations. 
Therefore, we explore the option of using a mobile 
sensor system based on unmanned aerial vehicles 
(UAV) that can be deployed in response to an alert 
issued by a single fixed sensor. The navigation system 
for such autonomous aircraft pose significant challenges 
because they must react in real time to the UAV’s own 
observations to plan its future flight track. 

Several approaches have been applied to this 
problem previously. Sporns and Lungarella (2006) 
showed that maximizing information structure is highly 
effective in generating coordinated behavior in mobile 
sensor platforms. Thus, they proposed the use of 
information theory to derive navigation instructions (i.e. 
waypoint list) for mobile sensors. In contrast, Singh and 
Fuller (2001) demonstrated a Model Predictive Control 
(MPC) scheme for navigating a vehicle with nonlinear 
dynamics through a vector of known waypoints to a goal 
while managing the constraints of UAV control.  Such a 
system would serve as a second stage, implementing 
the navigation instructions as a series of UAV control 
commands. Here, we address only the first half of this 
problem, selection of waypoints defining transects to 
efficiently acquire the information required for source 
characterization. In contrast to that proposed by Sporns 
and Lungarella (2006), our navigation scheme is based 
on physics rather than statistics, taking advantage of a 
human-created expert system to reason from the UAV-
observed morphology of the contaminant field. It is 
based on models of atmospheric transport and 
dispersion. This approach is demonstrated for both the 
Gaussian plume (continuous release) and puff 
(instantaneous release) models. For both situations, the 
expert system uses the observed contaminant 
distribution to plan the waypoints required for 
contaminant field tracking via the UAV. Therefore our 
UAV navigation system uses simple geometric 
reasoning rather than complex statistical calculations. 
Because our priority is gathering concentration data to 
back calculate the source characteristics, the mission is 
to provide both a rapid collection of the required data via 
wise selection of transect waypoints and a 
computationally efficient navigational system to achieve 
this selection. The resulting data are used by a GA-
based source characterization scheme derived from that 
described by Long et al. (2008). 



 The goal of the UAV sampling trajectory is to obtain 
enough data to identify four parameters describing the 
release: source strength, source location (x, y), and 
wind direction. The could be used as an in-flight quality 
control parameter since the UAV would be equipped 
with both Global Positioning System (GPS) navigation 
and an airspeed sensor, so it could calculate the flight-
level wind vector directly. The navigation and source 
characterization systems will be tested together in the 
synthetic environment of a set of identical twin 
experiments. Such a setup uses the same model to 
create the synthetic data as will be used to complete the 
back calculation. The identical twin configuration is not 
fully realistic because it assumes that the assimilating 
model has no error. In the real world no models are 
perfect, so the results of identical twin experiments are 
necessarily optimistic. The identical twin approach is, 
however, advantageous in that it lets us quantify the 
accuracy of the source characterization algorithm 
without contamination by model error. Thus, it is an 
ideal framework for developing and testing a new 
system.  The system’s limits are then characterized by 
superimposing noise on the synthetic concentration data. 

 
2. PROCEDURES 

 
2.1  Genetic Algorithm 

 
A GA uses principals inspired by the fields of 

genetics and evolution to optimize the solution to a 
potentially non-linear problem (Holland 1975, Goldberg 
1989, Haupt and Haupt 2004). It works by iteratively 
improving a population of trial solutions called 
chromosomes. Each chromosome is composed of the 
parameters that we seek to tune so as to optimize the 
output of some process.  In this case we seek to 
optimize the fit between the modeled and observed 
concentration fields by tuning the wind direction, source 
strength and source location (x,y) used by the Gaussian 
dispersion model. The population of trial solutions is 
initialized with random values for each parameter that 
are distributed over the plausible range. A cost function 
measures the fitness of each trial solution, in this case 
the match between the modeled and observed 
concentration fields. Thus, following (Allen 2007b), the 
fitness of each chromosome is evaluated based on the 
following cost function: 
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where Cr is the concentration predicted by the 
dispersion model, Rr is the concentration from 
observation r, TR is the total number of sensor 
observations, and ε are constants used to minimize 
the impact of noise around the background 
concentration. This logarithmic form of the Root-Mean-
Squared-Error (RMSE) allows useful information to be 

extracted from the low concentration fringe of the plume 
or the puff. The cost function is summed over all 
observations from both the UAV and a single fixed 
sensor that initially detects the contaminant, initiating 
the UAV flight protocol. The value of the normalization 
scale factor, a , is determined by taking the sum of 
every concentration value, Rr, over the entire domain 
and over all time steps and dividing the total by one. To 
avoid taking the natural logarithm of 0 for observations 
below the sensor threshold, a small offset ε (set to 1× 
10-13 in this study) is added to the scale
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rved and modeled concentration.  
The GA updates the population of trial solutions by 

exchanging information between the fittest 
chromosomes of each generation (i.e., iteration).  Each 
generation of trial solutions is sorted by cost function 
value. The GA used here is elitist and so retains the 
best candidate solution (Haupt and Haupt 2004). The 
rest of the next generation is created by mating the 
chromosomes via a rank-weighted roulette wheel 
selection (Haupt and Haupt 2004) where each 
chromosome is assigned a probability of mating based 
on its rank within cost-sorted population. The mating 
procedure blends each of the parameter values of two 
parent chromosomes to create two replacement 
(offspring) chromosomes. Following the mating process, 
a fixed percentage of the population is subject to 
mutation, replacing one randomly selected parameter 
value by a random number from the same range used to 
initialize the population.  Mutation encourages a 
complete search of the solution space, preventing 
premature convergence to a local minimum. Haupt 
(2005) finds that large populations coupled with smaller 
mutation rates or small populations coupled with higher 
mutation rates lead to the most rapid convergence to 
the global optimum cost function value, thereby 
minimizing computational time by making the fewest 
possible cost function evaluations. The GA is generally 
adept at finding the correct fitness basin for the global 
optimum but somewhat slow in refining the trial solution 
to the actual optimum.  Therefore it is followed by a 
more rapid gradient descent method that is efficient for 
searching the local fitness basin. The best candidate 
solution found by the GA after 100 iterations is thus 
used as the first guess for a Nelder-Mead downhill 
simplex algorithm (Nelder and Mead 1965), which 
performs lo

. 
 

 
Real world concentration data do not have the pure 

signal available in our synthetically constructed data. 
Typical situations involve both observational modeling 
errors that are absent from an identical twin experiment 
unless corrective steps are taken.  In addition, for the 
Gaussian models used here there is an inherent 
mismatch between the ensemble average nature of the 
model predictions and the single realizations sampled 
by the sensor measurements. In our experiments we 
simulate the aggregate uncertainty by incorporating 
white noise into the observed concentration data. No 



assumption is made concerning the source of this noise.  
Long et al. (2008) show the performance of the coupled 
model over a range of signal to noise ratios (SNRs) is 
similar for both additive and multiplicative noise. In our 
experiments we use Gaussian additive noise with a 
mean of 0 and a signal to noise ratio (SNR) of 5, a value 
in the middle of the range successfully tested by Long et 
al. (2008). For our study, we’ve used a clipped 
Gaussian additive noise: that is, noise-contaminated 
concentrations below 0 are set to 0 as would real world 
measurements of negative concentrations.  Haupt et al. 
(2006) found little difference between results 
incorporating additive noise with those considering 
multiplicative noise. 

2.3  ation Modeling  

ssumptions the Gaussian “point” 
source plume model is 

 

 
Concentr
  
The Gaussian plume model is a time and ensemble 

averaged approximation to the true plume from a 
continuous point source. The Gaussian plume model is 
the particular solution to the eddy diffusion version of 
the advection/diffusion equation under the following 
assumptions that the conditions are steady state, the 
wind speed is constant with height, the eddy diffusivity is 
constant in space and time, and that mass is conserved.
  Under these a
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where C(x,y,z) is the pollutant concentration as a 
function of downwind position (x,y,z), u is the mean wind 
speed evaluated at effective release height h, q is the 
emission rate, and σ y, and σ z  quantify the lateral and 
vertical plume spread (with values that depend on 
dow stance, x).  The vertical spread is qu

b
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where x is in kilometers, σ y,   σ z  are in meters, and 

c d xπθ ⎛ ⎞= −⎜ ⎟
,  

θ  is 
in radians (Beychok 1995). For neutral stability, a = 61.1, 
b = 0.9, c = 12.5 and d = 1.1 (Beychock 1995). The 
effective release height is h, includes buoyant rise of the 
plume near the source. The coordinate system is 
rotated such that the x-axis is along the direction 
traveled by the plume and the y-axis is the crosswind 
direction. The first exponential factor expresses the 
distribution of mass in the vertical dimension at a given 
downwind distance x, the first term signifying the initial 
release and the second denoting the virtual source due 
to reflection from the ground), while the second factor 
describes the distribution of mass in the crosswind 
dime

sheared puff. The Gaussian puff 
mod l is defined as 

 

nsion at a given downwind distance, x. 
The release of a toxic contaminant is more likely to 

be an instantaneous release rather than a continuous 
emission. Therefore the Gaussian puff model is also 
tested. This model decouples the wind speed from the 
source strength so that we can back calculate both. In 
order to simulate a slightly less idealized environment, 

an asymmetric Gaussian puff is used as a crude 
approximation to a 
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distribution in the x-, y-, and z- directions, 
respectiv

e model are 
computed according to Beychock (1994): 

    
where Cr is the concentration at receptor r, (xr, yr, 

zr) are the Cartesian coordinates of the receptor relative 
to the source. q is the emission rate, Δt is duration of the 
release, t is the time since the release, u is the wind 
speed, (σx, σ y, σ z) are the standard deviations of the 
concentration 

ely. 
 The standard deviations of th
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 can be found 
in Be chock (1994). We assume σ  = σx. 
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ex, 
syst

 
where x is the downwind distance in km, and I, J and K 
are coefficients dependent on stability and

y y
 

2.4  UAV Nav 
 

The focus of this study is the development of an 
expert system for navigating a UAV through the data 
collection needed for source characterization for both 
continuous and instantaneous releases.  The waypoint 
selection rules of these two expert systems are 
manually developed rather than statistically derived.  
Thus, each rule is based on geometric reasoning based 
on the UAV’s own observations of the concentration 
field along with those from a single fixed sensor.  
Alternate rule systems are tested for the continuous 
release case while a single, considerably more compl

em is tested for the instantaneous release case. 
The UAV navigation expert system is tested in a 

virtual environment.  The simulated release is located at 
the center of a 1,400 m by 1,400m flight domain for the 
continuous release (plume) problem and at x = -6,000 
and y = 0 in a 14,000 m by 14,000 m flight domain for 
the instantaneous release (puff) problem. These domain 
sizes reflect the advection distances for the contaminant 
during the time required for the UAV to map the 
concentration field adequately for the GA to back 
calculate the source characteristics. The speed of the 
wind transporting both plume and puff is set to 5 m/s, 
the wind direction is set to 270 degrees in meteorology 
coordinates (from the west), the UAV departure location 
is set to the least favorable location, an upwind corner of 
the flight domain: x = -700 m, y = 700 m for the 
continuous release and x = -7,000 m, y = 7,000 m for 
the instantaneous release. This is the most awkward 
position for both problems as it lies as far as possible 
from the plume or puff trajectory while still being located 
in the flight domain. The UAV speed is 20 m/s, a typical 



value for small UAVs, but only four times the wind 

 
2.4.1

ute is broken into 
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a then calculate the 
route for the next pass using a single expert system rule. 
The pass 2 routing is calculated by  
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cha

 x location 
exc

d the 
source location is too small. The expert system picks 
the waypoints for pass 2 using the follo

 

speed. 

 Continuous Release 
 
We configure the simulation environment with a 

minimum of concentration sensors, one fixed surface-
based sensor located randomly within the downwind 
half of the flight domain, i.e. somewhere downwind of 
the source.  The flight domain is the area in which the 
UAV is allowed to operate.  It includes the area to be 
protected, a city for example, and adequate surrounding 
airspace for the maneuvers described below.  The other 
data collection component is an ensemble of expert-
system driven autonomous UAV equipped to measure 
both concentration and the vector wind.  The UAV are 
launched based on contaminant detection by the fixed 
sensor.  Thereafter the expert system of each UAV 
works independently using information from both the 
fixed sensor and the UAV itself to navigate the 
autonomous UAV so as to collect sufficient data for 
source characterization and dispersion prediction. 
Figure 1 illustrates the navigation routes for the three 
candidate expert systems tested here. Each route in 
figure 1 corresponds to the track produced by the 
corresponding expert system.  Each ro

ght passes separated by course and waypoints 
decisions made by the expert system. 

The first pass of Route 1 is for the UAV to fly 
straight to the sensor and then to send the data to the 
GA for analysis. We optimize the source characteristics 
by applying the GA to the pass 1 dat
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where Xaircarft is the x component of the next waypoint, 
Xsource is the source location as estimated by the GA and 
Xaircraft1 is the terminal waypoint of the first pass. For 
pass 2 the UAV flies upwind until it passes Xaircarft, then 
it progresses crosswind to transect the plume. After 
pass 2, the UAV again sends all available concentration 
data to the GA for recomputation of the sourc

racteristics.  At this stage in the flight approximately 
150 concentration observations are usually available. 

Route 2 differs from Route 1 in that the aircraft 
initially goes directly downwind until its

eeds that of the fixed sensor. Thereafter the UAV is 
governed by the same rules as in Route 1. 

Route 3 begins with the UAV following the same 
track as Route 2 for pass 1. Pass 2, however, uses a 
different approach, because the GA optimization tends 
to fail if the distance between the aircraft track an

wing rule.  
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where T is the time taken by the downwind leg of pass 1, 
xint is the aircraft x location after the pass 1 flight,  x sensor 
is the sensor x location, uaircraft is the UAV air-speed, 
uwind is the wind speed, xpel is the distance to which the 
plume extends by the end of pass 1, xsrc is the GA-
optimized source, d is half the difference between the 
sensor x location and the optimized source x location, 
dx is half the difference between the original aircraft x 
location and the GA-optimized source x location, and xair 
is the x location of the UAV at the end of pass 1. If xpel is 
larger than d, pass 1 is deemed to be as close to the 
source as is useful, so the aircraft shifts downwind for 
pass 2. If not, the aircraft shifts upwind. When the UAV 
has flown along wind by a distance dxt, it turns 
rosswind to complete pass 2. Example flight tracks for

srx x−⎛ ⎞                         
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the UAV heads north for distance N then turns through 
angle φ. To solve for φ, four conditions
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corresponding UAV-sampled conce

2.4.2. Instantaneous Release 
 
The task of the expert system is more complex for 

an instantaneous release because the concentration 
field is evolving with time as the puff drifts downwind 
and disperses. Thus, the aircraft needs first to find the 
puff and then to maneuver to keep passing through the 
puff as it drifts downwind. A single expert system was 
designed to do this by evaluating the time-dependent 
concentration records from both the UAV and fixed 
sensor. The expert system launches the UAV as soon 
as the fixed sensor detects the puff and then 
maneuvers the UAV to make multiple passes through 
the estimate of the center of the moving puff. 

As with the expert system for Route 1 for the 
continuous release scenario, the pass 1 rule of the 
instantaneous release expert system is that the UAV fly 
directly toward the sensor. The pass 2 rule selects one 
of two patterns. If the heading angle for pass 1 is 
between 180° and 315°, counter-clockwise relative to 
downwind, pass 2 follows pattern 1 in which the UAV 
flies northward for distance Δy then goes upwind. This 
leg thus takes the UAV along the track followed by the 
estimated puff center.  Under any other circumstance 
the UAV follows the 2 rule pattern (figure 3) in wh

 are required. 
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where Δx = xaircraft – xmax, xaircraft is the x component of 
the last location of pass 1. xmax  is the x location of the 
pass 1 maximum concentration observation, θ1 is the 
heading flown on pass 1, uaircraft ,and uwind are the UAV 
speed and wind speed respectively. N, n, a, φ are 
defined as shown graphically in Figure 3. 
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RESULTS 
 

3.1 GA Tuning 
 

A sensitivity study was conducted to determine 
which combination of GA parameters yields accurate 
source characterization with minimum computational 
cost. When we move to more refined dispersion models, 
we expect the computation of the concentration field to 
be computationally expensive, so we wish to determine 
the best combinations of population size and mutation 
rate to minimize the number of calls to the cost function 
and hence to the dispersion model. This is a Pareto 
multi-objective optimization problem. That is we are 
trying to minimize both error and pseudo-runtime, 
competing objectives. We expect a “front” of solutions. 
This analysis is similar to that undertaken by Haupt et al. 
(2007). We note that, the GA convergence depends on 
the number of iterations. Since the solution is known for 
these identical twin experiments, we can stop the GA 
when the error reaches a pre-specified tolerance level, 
in this case 1 percent of source strength. We wish to 
explore a wide range of parameter combinations. The 
goal is to minimize the number of cost function 
evaluations required to reach this level in an effort to 
minimize the CPU time. Mutation rates examined are 
0.01, 0.02, 0.04, 0.08, 0.16, and 0.32. Population sizes 
are 10, 20, 40, 80, 160, 320, 640 and 1280. Iteration 
counts are 10, 20, 40, 80, 160, 320, 640 and 1280. 
Each point in the plotted results represents the mean of 
100 Monte Carlo runs. Figure 5 shows that the larger 
the pseudo-runtime (iteration count times population 
size), the smaller the magnitude of the errors. We wish 
to minimize the CPU time, however,

ned to collect enough information to make a firm
decision on the track of the puff center while Pattern 2 is 
designed to intercept the puff given defin
information on the track of the puff center.  

Pass 3 to pass 6 all use the same navigation ru
because we already have a tentative puff locatio
on information from pass 1 and pass 2. The task of 
passes 3 to 6 is to refine the puff location. Thus the UA
is navigated by the estimated puff location. The puff 
track is estimated from the points of maximum 

n
a plume, however, the puff presents 

r
te 3. An example flight track is shown in figure 4. 

 
2.5  Statistical Analysis Methods 

 
The expert system UAV navigation systems 

described above usually work well given concentration 
data from a single sensor and the UAV. In same cases, 
however, the GA fails to characterize the source 
adequately. For both continuous and instantaneous 
releases the back calculation can fail for sensor 
locations that do not provide adequate samples of the 
contaminant. Even in these trying circumstances the 
GA-expert system combination often works. Therefore, 
to overcome these challenges we adopt the technique 
of launching an ensemble of non-communicating UAV, 
each of which tries to solve the source characterization 
problem on its own. The ensemble size is called Naircraft. 
The “typical” answer from the ensemble is taken as the 
system’s result, eliminating most outliers.  Both the 
mean and median operators are tested to see which 
best eliminates outliners. The statistical results 
presented will be the average and stan
th
N
independent UAVs

 
 

3. 

e combinations of population size and iteration 
count having the potential for combining high accuracy 
and low runtime. These are tested more thoroughly to 
determine the optimum mutation rate. 

Figure 6 shows the results for the 3 population 
sizes and iteration counts suggested by Figure 5. As 
before, each calculation is repeated 100 times and the 
results are averaged to minimize the stochastic 
uncertainty. The four best configurations were 
reevaluated with 1000 trials to select the final 
configuration. From these results we concl

e best combinations is population size 40, mutation 
rate 0.32, and iteration count 640. For these 1000 test 
runs it produces source strength error magnitude larger 
than 50% only 10 times (1% of the cases). 

To quantify our confidence in the ability of the GA-
optimized coupled model methodology to match a 
known solution, a Monte Carlo technique is used. The 
GA is run on the same problem 100 times with different 
initial random seeds. From the resulting sample of 
solutions we are able to estimate the mean, median, 
and standard deviation of the error distribution. An 
experiment with 1000 runs shows that the mean source 
strength error is 0.15,  strength errors is 
0.12 and standard deviation source strength error i
0.17 for population size 40, iteration count 640, and 
mutation rate 0.32. The actual emission rate is q -= 1 



kg/s. The error is )( qqabs act − , qact is actual 
concentration, and q is back calculated concentration. 

Table 1 shows the results of a similar test 
conducted with a randomly specified wind direction and 
source location. The first metric used here, w_mean, is 
the mean difference in wind direction over the 100 
Monte Carlo runs between the actual value and the 
ensemble mean of the back calculated values. Std 
stands for the corresponding Monte Carlo standard 
deviation. The second metric, w_median, is similar 
except that it is based on the ensemble median. Its 
corresponding Monte Carlo standard deviation is also 
reported. These quality analyses are repeated for the 
other back calculated parameters, q_ indicates the 
source strength errors while x_ and y_ indicate source 
location coordinate errors. These results indicate that it 
is difficult to back calculate the source location when the 
true source is near the edge of the domain, particularly 
when part, or all, of the plume immediately advects or 
disperses out of the domain. To avoid this problem the 
UAV flight domain should focus on the area to be 
protected, so that sources near the crosswind and 
downwind boundaries are not a threat. Thus, for all 
subsequent tests we fix the true source location at (0, 0), 
the maximum threat location. In contrast, a source at 
(30,-590) that lies near the edge of the flight domain is a 
difficult position to back calculate, although the 
ensemble method improves the results. The plume from 
such a source would not, however, cross the area to be 
protected.   

To explore the utility of the GA-based source 
characterization method to real world problems, we 
must also consider the impact of sensor dynamic range, 
again via identical twin experiments. Following Long et 
al. (2008) we test with an 8×8 grid that has 64 sensors. 
In this study, however, a detectability threshold is 
applied to mimic the behavior of real world sensors. This 
threshold is expressed in terms of the dynamic range of 
concentrations sampled, i.e. the maximum of the sensor 
reported concentrations times a specified dynamic 
range scale.  Any values less than this threshold are set 
to zero. Table 2 shows the results for an eight member 
ensemble for each threshold value in a logarithmic scale. 
These results imply that we require  at least 13 sensors 
to exceed the threshold value in order to achieve 
accurate results. For an 8x8 sensor array, meeting this 
ondition requires a sensor threshold scale of 10-11c , an 

ensor. Therefore in the next 
gle sensor situation with a 

realis -3

 also exhibits problems if 
nsor is located very near the edges of the 

ble size does not 
improve this situation and sometimes makes it worse.  
The

four.   Likewise, for an 
insta

unrealistic value for a real s
section we pursue the sin

tic threshold scale of 10 . The additional data 
points required for a successful back calculation are 
acquired using mobile sensors as described above. 
 
3.2 Continuous Release 

 
A virtual autonomous aircraft is used as the mobile 

concentration sensing platform as described in section 
2.4.1. We first try Route 3 for sensor SNR=5 and 
ensemble size of 4, 10, 20 and 50. Figure 7 shows how 
the ensemble method improves back calculation of 
wind direction and source characterization. Route 3 
produces accurate results if we set the fixed sensor 

location at least 30 m from the source x location. This 
constraint is realistic because we don’t need to find the 
source if the sensor is very near the source, because 
the extreme concentrations will suffice to localize the 
source as being in the immediate vicinity of the sensor. 
Route 1 does not have this near-field problem but does 
not produce solutions as accurate as Route 3. The 
Route 1 computing times are slightly shorter than those 
for Route 2. Route 1, however, requires at least 20 
ensemble members to obtain accurate results, the 
same as for Route 2, while Route 3 produces a 
successful back calculation with only four ensemble 
members. Analysis of the UAV tracks requested by 
these three expert systems explains why these 
differences occur. The plume penetrating leg of Route 
1 is asymmetric relative to the plume axis, while that for 
Route 3 is symmetric. Moreover, accurate back 
calculation of the source characteristics requires two 
UAV passes through different parts of the plume. 
Failure to achieve plume penetration at two well 
separated locations limits the amount of independent 
information available and so degrades the accuracy of 
the GA calculation. Route 1
the fixed se
flight domain. Increasing the ensem

refore, the expert system rule set for Route 3 is the 
best choice of those tested. 

 
3.3 Instantaneous Release  

 
Back calculating the source characteristics for an 

instantaneous release proved to be more difficult than 
was the case for a continuous source because of the 
time dependence of the concentration field and the 
challenge of locating the moving puff from the limited 
data provided by one fixed concentration sensor and 
another aboard the UAV. The moving target issue also 
requires that the flight domain for an instantaneous 
release be increased in size by an order of magnitude, 
to a 14 km square. For the ensemble sizes tested here 
the method often has a problem quantifying the 
crosswind location y. This problem might be 
ameliorated by using the UAV-GPS-measured wind 
direction in the Gaussian concentration model rather 
than forcing the GA to derive both wind direction and y 
location.  This change would eliminate the potential for 
cross-talk between these two parameters during the 
back calculation. Baring this change, Table 3 suggests 
that 20 ensemble members are required to yield a 
reliable solution for an instantaneous release, in 
contrast to the continuous release results where the 
best route required only 

ntaneous release the UAV-plus-GA system 
requires at least passes through the puff to back 
calculate the source characteristics accurately, where 
as for a continuous release two well-placed passes 
through the plume sufficed. 

As noted above, the crosswind source location is 
hard to back calculate accurately for an instantaneous 
source.  In contrast, accurate back calculation of the 
source strength, wind direction and x location is easy. 



We analyze this difference using the histogram of the 
back calculated y component of the source position. 
Figure 8 indicates that the ensemble method works for 
95% of the cases, but in the remaining 5% has a 
problem with crosswind location. The instantaneous 
release version of the UAV navigation system 
combines elements from continuous release Routes 1 
and 3 because we must first find the puff, then track it 
for long enough to document both its motion and its 

xpansion. Figures 4 and 8 imply that we can 
he source characteristics if we get at 

least three well separated passes through the core of 
the

that 

sensors requires 
ore computational time and provides less accuracy 

d. The Gaussian plume model 
problem is relatively easy to back calculate accurately, 
whil

d of fixed 
sen

ates of source 
stre

anned 
airpl e and field test data. Also using multiple UAVs to 
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3.4 Discussion 

 
The tests described above demonstrate that we can 

use a UAV to obtain enough data for the back 
calculation of source characteristics provided we are 
given warning by a single randomly placed fixed sensor 
to stimulate launching the UAV. These results suggest 

use of a small ensemble of UAVs would allow us to 
work with a much smaller number of fixed sensors than 
would typically be required to characterize a source. 
This approach could potentially yield large cost savings 
compared to siting a large number of fixed sensors. 

Our navigation system is based on a human-
created expert system using geometric and physical 
reasoning based on wind speed and direction and the 
locations where the UAV passes through concentration 
peaks. In contrast, previous UAV navigation methods for 
source location have used Neural Networks or other 
complex biologically-based theories (see Sporns et al. 
2006). Our simple expert system method obtains an 
answer both accurately and quickly. The computational 
complexity of the method is low.  For example, the back 
calculation for an 8×8 grid of fixed 
m
than our UAV metho

e the puff model exhibits a 5 % error rate on back 
calculation of the crosswind location.   
 
4. CONCLUSIONS 

 
Source characterization using the Gaussian plume 

and puff models optimized via a GA is tested using 
identical twin experiments incorporating additive noise 
into the synthetic data. An expert system is developed 
for navigating autonomous aircraft in such a manner 
that concentration data collected by the virtual UAV 
improves the characterization skill. In contrast to 
previous studies that required an 8 × 8 gri

sors for this task our expert system allows back 
calculation of source characteristics with a single fixed 
sensor and a small fleet of UAVs. This means we may 
apply our strategy in those real world problems where 
dense fixed sensor networks are impractical. 

When we detect a release with the single sensor, 
the expert system navigated autonomous aircraft are 
launched into the virtual world of the identical twin 

experiment to collect concentration data. This 
information is then used to back calculate source 
strength and location as well as the wind direction. The 
latter is used as a check on the system as the 
parameter is also available from the UAV’s GPS and air-
speed systems. From this information we can back 
calculate the source characteristics both precisely and 
quickly using a Genetic Algorithm. Use of an ensemble 
of UAV launches minimizes the error in this back 
calculation and yields accurate estim

ngth for the plume model for two plume-symmetric 
flight legs with just four ensemble members. In contrast, 
for the puff model, twenty ensemble members and six 
flight legs are required to provide sufficient information 
to back calculate the source location.  

Our results have been validated using an identical 
twin experiment approach to construct the synthetic 
data for use with virtual UAV. While such an approach is 
ideal for algorithm testing purposes, future work should 
test our model and expert system with actual unm

an
track the contaminant in a coordinated fashion could 
help avoid computational limits and acquire data in more 
a timely manner to compensate for the tight time 
constraints inherent in emergency management.  
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c

igure 1. Sample UAV routes for the three candidate UAV navigational expert systems for continuous release 
haracterization. 

 



R o u t e  1  A i r c r a f t T r a c k

Figure 2. Sample flight tracks for Route 1 and Route 3 plume characterization expert systems. The horizontal axes 
are: x represents along wind and y the crosswind directions. The vertical axis is concentration as sensed by the UAV. 
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Figure 3. Pass 2 rule for Puff source characterization.  Variables shown on the figure are the inputs for equations 10 
through 13. 
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Figure 4. A sample flight track for the puff scenario. The concentration shows as three Gaussian transects on 
the early legs of the flight. Subsequently the puff disperses enough to be less apparent on the diagram. The 
axes are the same as for Figure 3.2. 
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Figure 5 Monte Carlo mean accuracy versus pseudo-runtime results for 362 combinations of the GA 
parameters. The pseudo-runtime is the population size times the iteration count.  The source strength 
accuracy is measured because it is the most difficult aspect of the plume source characterization problem. 

 
Figure 6 Same as Figure 5, but showing the mean of 1000 runs for the three best combinations of the GA 
parameters.   



 
Figure 7 Plume source characterization result as a function of UAV route. Blue color is Route 1, green is Route 2, and red 
is Route 3. Horizontal axis represents each ensemble member. Error bars indicate the standard deviation. Actual 
solutions are that the wind direction is 270°, the source strength is 1 kg/s, and source location (x,y) = (0,0). 

 



 
Figure 8. Histogram of the crosswind y distribution for various ensemble sizes in the puff source 



Table 1. The statistical results for random source location and wind direction. All statistics are computed 
over 100 Monte Carlo runs.  The column headings are defined in the text. 

Ensemble 
member w_mean std w_median std q_mean std q_median std 

4 11.23 39.58 9.81 42.78 2.672 44.22 0.73 3.35 
6 11.00 36.21 9.40 38.79 1.60 19.03 0.51 1.18 
8 10.27 35.76 8.94 42.11 5.16 135.87 0.58 2.31 
10 12.19 39.94 10.60 46.22 3.71 65.49 0.56 2.67 
12 9.13 32.61 7.56 38.89 0.81 3.67 0.43 0.85 
14 7.97 28.06 5.68 29.48 507.33 1.60E+04 0.47 1.41 
16 10.68 34.12 8.30 39.54 10.89 312.84 0.55 2.00 

 
Ensemble 
member x_mean std x_median std y_mean std y_median std 

4 14.22 38.04 13.30 36.57 13.71 34.06 12.79 34.13 
6 13.15 32.81 11.67 33.00 14.73 44.20 13.27 46.14 
8 13.72 44.10 12.88 47.10 11.59 33.32 10.66 32.89 
10 15.15 47.25 14.20 48.15 14.84 49.93 13.06 49.57 
12 12.16 35.81 11.34 39.03 12.83 48.61 11.55 48.08 
14 12.92 38.95 10.97 40.61 12.60 35.96 10.61 35.00 
16 15.25 51.55 13.75 51.21 15.38 45.80 13.97 47.62 

 



 
Table 2. The statistical results for an ensemble of eight members as a function of threshold scale. Column 
headings are as in table 4.1. Nthresh is the number of the sensor above the threshold. 

 
threshold 
scale w_mean std w_median std q_mean std q_median std 

0 0.080 0.21 0.049 0.037 0.13 0.17 0.11 0.091 
1.00E-01 4.48 0.087 4.50 0.041 3.26 0.15 3.15 0.026 
1.00E-02 4.47 0.11 4.49 0.041 3.31 0.17 3.15 0.030 
1.00E-03 0.63 0.042 0.63 0.047 7.37 0.39 7.38 0.43 
1.00E-04 1.24 0.038 1.24 0.047 5.55 0.24 5.54 0.29 
1.00E-05 1.77 0.59 2.31 0.48 1.24 0.79 1.80 0.47 
1.00E-06 3.06 0.46 2.95 0.033 0.95 0.31 0.98 0.089 
1.00E-07 0.64 0.045 0.64 0.059 0.67 0.10 0.67 0.10 
1.00E-08 0.64 0.047 0.64 0.054 0.66 0.098 0.65 0.10 
1.00E-09 0.64 0.050 0.65 0.056 0.67 0.090 0.67 0.10 
1.00E-10 0.14 0.37 0.050 0.031 0.18 0.30 0.12 0.088 
1.00E-11 0.076 0.20 0.044 0.034 0.12 0.16 0.11 0.096 

 
x_mean std x_median std y_mean std y_median std Nthresh 

0.88 2.51 0.49 0.37 0.70 1.09 0.60 0.45 64 
41.50 0.54 41.58 0.36 111.67 0.44 111.78 0.25 7 
41.42 0.78 41.56 0.35 111.55 0.63 111.76 0.29 7 
18.05 0.33 18.02 0.37 117.43 0.27 117.42 0.31 8 
13.37 0.43 13.36 0.50 83.58 0.39 83.55 0.46 9 
23.28 6.93 29.73 6.08 43.25 8.53 40.75 6.6 10 
24.89 5.40 23.66 0.36 26.66 2.90 26.32 0.49 11 

2.07 1.14 1.98 0.63 0.671 0.67 0.63 0.53 12 
2.06 1.13 1.94 0.55 0.70 0.62 0.65 0.46 12 
1.96 0.53 1.99 0.56 0.65 0.45 0.70 0.50 12 
1.60 4.40 0.51 0.37 1.04 1.88 0.66 0.46 13 
0.78 2.37 0.42 0.32 0.59 0.99 0.51 0.41 13 

 
 
Table 3. Puff results for various ensemble sizes. Each column is headed with the true value and contains the 
mean and standard deviation of 100 Monte Carlo runs. w is the wind direction, q is source strength, while x 
and y define the source location. 

Ensemble  
members 

270  1  -6000  0  
w std q std x std y std 

4 269.95 0.71 1.00 0.16 -6000 10.34 -9.81 124.46 
10 269.90 0.56 0.98 0.040 -6000 7.43 -17.45 99.66 
20 269.96 0.31 0.98 0.023 -6000 3.28 -5.60 54.38 
50 269.75 1.29 1.01 0.21 -6000 8.09 -43.78 230.86 
 
 


