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1. INTRODUCTION  
 

 Source characterization for an unknown 
contaminant puff release is usually achieved by 
inverting a transport and dispersion model, such as 
done by a genetic algorithm system (Allen et al. 2007, 
Haupt et al. 2007, Long et al. 2008) or Markov chain 
Monte Carlo Chow et al. 2008; Monarch et al. 2008, 
Keats et al. 2007). Such techniques test a statistically 
generated sequence of trial inputs to the forward model 
for how well they cause it to reproduce observed 
concentrations.  There are, however, meteorological 
situations in which the deformation component of 
transport dominates the spread of an airborne 
contaminant, allowing successful back-calculation 
without recourse to a sequence of forward model runs.  
This situation arises when the puff size is approximately 
that of the dominant eddies, in which case the puff is 
deformed by those eddies faster than it is dispersed by 
the smaller eddies.  Two common settings in which this 
occurs are the convective boundary layer (for puffs with 
a horizontal scale similar to the boundary layer depth) 
and in the mid-latitude troposphere (for puffs with a 
horizontal scale similar to that of baroclinic cyclones 
(Stohl 1996).  In these settings back trajectories 
computed for contaminated air parcels tend to converge 
on the source location as time is rewound back to that of 
the release.  Convergence is not perfect of course, both 
because of dispersion by smaller eddies and because 
the wind field in the dominant eddies will not be perfectly 
resolved by observations.   
 The use of back trajectories to locate the source of 
an airborne contaminant has been tested in a number of 
settings ranging from source-receptor studies (e.g., 
Occhipinti et al. 2008) to investigations of radioactive 
contamination (e.g., Lee et al. 2004).  The method often 
works well on the synoptic scale for two reasons.  First, 
for a continuous source, the time evolving flow ensures 
that parcels contaminated at different times follow 
different trajectories.  Thus, parcels backtracked from 
multiple sensor-based contaminant reports will follow 
different paths, all of which will eventually cross the 
source location.  Second, for an instantaneous source, 
the deformation in the synoptic scale flow often spreads 
contaminant trajectories (e.g., Ishikawa 1995).  In this 
situation back tracking until the trajectories come 
together will reveal the source location. 
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Because boundary layer turbulence exhibits both rapid 
time evolution and large deformation this back trajectory 
approach can also be applied on scales similar to those 
of the largest boundary layer eddies, i.e. for transport 
distances of a few hundred meters to a few kilometers.  
This new application of back trajectory analysis is the 
focus of the current study. 

 
2. PROCEDURES 

 
For situations such as those described above we 

have developed a new algorithm: a back trajectory 
model for hazard origin estimation (BackHOE).  The 
essence of the method is to backtrack those air parcels 
known from sensor observations to be contaminated.  
The method is tested here in the boundary layer setting, 
with transport times on the scale of minutes and 
distances of less than a kilometer.  For this study we 
use observations obtained from the turbulence-resolving 
Eulerian-Semi-Lagrangian (EULAG) large eddy 
simulation (LES) model Smolarkiewicz and Margolin 
1997) run of the Fusing Sensor Information from 
Observing Networks (FUSION) Field Trial 2007 (FFT07) 
domain (Platt and Warner 2008).  Simulated 
concentration sensors are deployed at 20 m intervals in 
a 280 by 280 m area within the 2230 by 2230 m 
computational domain.  Each sensor produces one 
measurement every 10 seconds.  

A new back trajectory was initiated from every 
sensor measurement that exceeded a user specified 
concentration threshold of 0.2 percent of the maximum 
concentration.  Thus, a single analysis of source 
location involves computation of hundreds of back 
trajectories, each extending a number of minutes back 
from the time of measurement.   The trajectory 
calculations are limited to the horizontal plane of surface 
wind observations since vertical velocity data and 
detailed upper-level winds are rarely available in 
contaminant release situations.  This, approximation 
limits the validity of BackHOE to those situations where 
the surface flow is divergent, i.e. where the back 
trajectories would be held against the surface by 
overlying downdrafts.  This assumption imposes little 
additional restriction on the basic method because it 
requires a highly deforming flow in order to for the back 
trajectories to converge and, in boundary layer settings, 
such flows typically occur under convective downdrafts. 

The winds necessary to compute the back 
trajectories are obtained from simulated surface 
observation stations collocated with the concentration 
sensors within the computational domain of the LES 
model.  The concentration data are generated by driving 
a Lagrangian particle model (Biazar et al. 2005) with the 
horizontal wind field from the LES model.  An 
instantaneous release of 350,000 particles at 1 m 



altitude is used for his study.  The source location was 
varied between runs to determine how BackHOE’s 
performance depends on the turbulence structure into 
which the contaminant is released. 

Each step of a parcel’s back trajectory is calculated 
by interpolating the modeled surface winds in time and 
space to the current parcel location and then advecting 
the parcel upwind at that velocity for a time step of 10 
seconds.  An adjustment factor is available to the 
surface winds to obtain the advecting wind.  This factor 
corrects for the increase in wind speed with altitude its 
effect on the advection of the turbulently deepened puff.  
Since our test data is derived from a purely two-
dimensional Lagrangian particle model, this factor is set 
to 1.0 for the current study. 

If a parcel advects off the observation grid the 
frozen wave approximation is applied to determine the 
advecting wind.  In this situation each of the available 
wind grids is advected upwind at the mean wind speed 
for a number of seconds equal to the difference 
between its valid time and the current time along the 
back trajectory.  Of those advected wind grids which 
contain the parcel, that with the closest valid time is 
used as a source for wind data to continue the parcel’s 
advection along the back trajectory. 
 In settings where deformation dominates dispersion 
these tracked parcels should come together at the 
source location.  Several metrics for diagnosing 
maximum convergence of the cloud of contaminated 
parcels, thus deducing the source location, were 
developed and tested.  For a single source release the 
clumping of the parcels around their spatial centroid (i.e. 
mean position) indicates that the back trajectories have 
reached the source location.  A number of clumping 
metrics were tested.   The simplest is the mean-
squared-distance (known here as position variance) 
between the parcels and their centroid.  A similar metric 
based on the mean-squared-distance perpendicular to 
the mean wind direction allows the parcel clouds to 
deform along the wind direction while contracting in the 
crosswind direction.  For each of these metrics the 
source location was diagnosed as the centroid location 
at the time when the metric reached its minimum value.   

For diagnostic visual interpretation we tested two 
forms of spatial histogram.  The first form depicts the 
number of parcels passing through each cell of a spatial 
grid.  The histogram is first computed for each time step 
and then the maximum count for each grid cell is used 
in the final map. The grid size is adjusted to obtain a 
smooth contour analysis on this composite map.  The 
second form weights each parcel’s contribution to the 
count by the concentration measurement which 
triggered its creation.  For both forms, the grid box with 
the highest count is the geographic location of the 
maximum convergence of the contaminated parcels. 
 For a multi-source release, application of the scalar 
metrics described above requires that we first apply 
cluster analysis to associate each parcel with a 
particular cloud and then quantify the evolution of each 
cloud’s spread along its back trajectory.  The K-means 
clustering algorithm (Wilks 2006) is used for this 
purpose.  At each time step along the back trajectories 

each parcel is reassigned by the clustering algorithm.  
Parcels tend to remain with the same cluster however, 
since at each new time step the clustering algorithm is 
seeded with the cluster centroids from the previous step. 
The position variance metrics and histogram maps are 
then computed separately for each cluster.  It is also 
possible to compute count-weighted or concentration-
weighted position variance between cluster centroids 
instead of individual parcels.  These metrics quantify the 
convergence of multiple clusters back to a single source, 
minimizing the need to match the number of clusters to 
the number of releases though a priori knowledge. 

Since the number or sources is not known, a 
method was also developed for determining the source 
locations when the model is run with more clusters than 
sources.  This is achieved by ranking the clusters in 
order of their minimum spread, i.e. how well each 
converges to a single source location.  Those clusters 
which fail to converge along their back trajectory are 
attributed to air parcels that were deformed into the 
vicinity of the contaminant cloud and subsequently 
mixed into the cloud.  Those clusters that do converge 
are examined and their convergence locations grouped 
in space and time.  The number of groups indicates the 
number of sources. 

BackHOE was tested for a number of source 
locations for both single and multiple sources in an effort 
to determine the conditions under which the method 
performed well and those for which it failed.  Results are 
presented for three cases: single-source success, two-
source success and a single-source failure.  In all cases 
the surface wind is from the northwest.  The wind field 
and sensor locations remain unchanged between case 
studies, only the source number and locations are 
changed. 

 
3. RESULTS 

 
Results of case study experimentation show that 

BackHOE succeeds in characterizing an unknown 
instantaneous source in those meteorological situations 
where puff deformation by the transporting wind field 
poses challenges for conventional forward-model-based 
artificial intelligence techniques.  The histogram map in 
Figure 1 depicts the parcel cloud’s back trajectory for a 
single-source release.  The wind is from the northwest, 
so the back trajectories extend northwest from the 
square region gridded with sensors.  The wind field 
deformation pulls the parcels together as they approach 
the source (going backward in time) and then apart 
again after they pass the source.  The diagnosed source 
location, shaded deep red on the map, is outside the 
area sampled by the sensor grid.  Figure 2 shows this 
same information from a quantitative statistical 
perspective, plotting a time history of the spatial spread 
(i.e. intra-cluster location variance) of each of two 
clusters of parcels. The cluster which tracks to the 
release point achieves a much lower minimum spread 
than the other, thereby identifying it as the correct 
choice for source location.  The plot includes results 
from five BackHOE runs, each for a different start time, 
to demonstrate the repeatability of the results.  For 



these same five runs, Figure 3 shows the location of the 
cluster centroids at the time each cluster achieves 
minimum spread.   The cluster with the smallest 
minimum was able to consistently locate the source to 
within a few decameters despite the source being 
located 15 decameters outside of the concentration 
sensor grid. 

The second case study illustrates BackHOE’s 
ability to distinguish and locate two sources whose 
evolving contaminant clouds overlap in the sensor grid.  
Figure 4 shows the histogram map of concentration-
weighted parcel locations for the back trajectory to a 
pair of sources.  The back trajectory clouds are 
somewhat more compact (i.e. narrow in the crosswind 
direction) than in the unweighted parcel histogram map 
shown in Figure 1.  Nonetheless, both graphics 
accomplish the task of defining the location of the 
source or sources.  For this second case, the maximum 
convergence of parcel locations occurs in two positions, 
one along each of the swaths of parcel back trajectories.  
One BackHOE source location estimate is directly under 
the right-hand sources and the other just to the 
southwest of the left-hand source. 

In both of these successful cases, the releases took 
place under the areas of subsidence that fill the majority 
of the convective boundary layer (Young 1988).  In 
contrast, BackHOE fails, as expected, when a release 
takes place under a convective updraft.  In such a 
release the contaminant is lofted away from the surface, 
reducing the immediate risk to downwind surface 
locations.  Although posing less of a threat to 
downstream areas, such releases violate the basic 
assumption of BackHOE that trajectories remain in the 
surface layer.  This violation, coupled with the horizontal 
convergence of the surface layer flow into the 
convective updraft causes the back trajectories to 
diverge rather than converging on the true source 
location.  The histogram map shown in Figure 5 
illustrates such a failure in a single-release case study.  
Since the flow is converging, the back trajectories 
diverge.  While the densest congregation of back 
trajectories does pass quite close to the true source 
location others fan out over a wide area.  Moreover, the 
densest congregation of parcel locations occurs when 
the contaminant cloud passes over the sensor grid 
rather than at the time of release.  Thus, BackHOE fails 
in those situations where convergent surface layer flow 
lofts the contaminant cloud away from surface.   

 
4. CONCLUSIONS 

 
Extension of the back trajectory of source-receptor 

analysis from synoptic scale problems in long-range 
transport to turbulence scale short-range contaminant 
source location problems is shown to be feasible.  The 
BackHOE implementation introduced here was tested 
on synthetic wind and concentration data from a 
turbulence-resolving LES model that provides the flow 
field for a Lagrangian particle model.  For the high-
impact cases where the hazardous release occurs 
under a boundary layer downdraft and so remains in the 
surface layer, BackHOE is able to distinguish and locate 

multiple sources.  It retains this capability even when the 
contaminant clouds overlap and when the source lies at 
moderate distances outside the sensor domain.  In 
contrast, for the lower-impact cases where 
contaminants are released into a lofting updraft, 
BackHOE’s basic assumptions are violated so it fails to 
locate the source.   

BackHOE’s success depends on sophisticated 
metrics of trajectory convergence and, in the case of 
multiple sources, on clustering of parcel trajectories.  
Multiple metrics are presented, the most successful of 
which are intra-cluster location variance and 
concentration-weighted parcel histogram maps. 

The back trajectory source location problem is 
probably easier for continuous sources than for the 
instantaneous sources studied here, because eventually 
divergent flows will be sampled.  As with prior, synoptic 
scale, back trajectory source-receptor studies, the ability 
to monitor a plume in an evolving flow field will 
eventually reveal the location where the majority of the 
back trajectories cross. 
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Figure 1. Histogram map of parcel locations for the back trajectory to a single source.  The bullseye marks 
the true source location while the maximum convergence of parcel locations just to its south marks the 
BackHOE estimate of the source location. 



 
Figure 2. The time series of parcel cluster spreads, i.e. position variance around the cluster centroids, for a 
two cluster analysis of a single source location.  BackHOE was run for 5 different start-times to demonstrate 
the repeatability of the results.  In each case the cluster with the smallest minimum spread tracks close to 
the source, reaching a minimum spread near its point of closest approach.   



  
Figure 3. A map of the locations at which each cluster achieves its minimum spread.  The true source 
location is shown as a triangle.  The cluster with the smallest minimum spread achieved that value within a 
few decameters of the true source location.  In contrast, the other (large-spread) cluster suggests a source 
position that is in error by almost 20 decameters. Thus, the magnitude of the intra-cluster spread correctly 
identifies both the cluster that tracks to the source and the position along that track at which the source is 
located.   
 



 
Figure 4. Histogram map of concentration-weighted parcel locations for the back trajectories to a pair of 
sources.  The bull’s-eyes mark the true source locations.  The maximum convergence of parcel locations 
occurs in two positions, one directly under the right-hand source and the other just to the southwest of the 
left-hand source. 



 
Figure 5. Histogram map of concentration-weighted parcel locations for the back trajectory to a single source.  
The bullseye marks the true source location while the maximum convergence of parcel locations near the 
start-point of the back trajectories marks the BackHOE estimate of the source location. 
 


