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1. INTRODUCTION 

In the event of chemical or biological (CB) agent 
attacks or accidents, first-responders need hazard 
prediction data to launch effective emergency 
response action. Accurate and timely knowledge of 
the wind fields in urban areas is critically important to 
identify and project the extent of CB agent dispersion 
to determine the hazard-zone. In their 2008 report 
(GAO-08-180), U.S. Government Accountability 
Office has reported that first responders are limited in 
their ability to detect and model hazardous releases 
in urban environments. The current set of modeling 
tools for contaminant dispersion in urban 
environments rely on empirical assumptions with 
diagnostic equations (Wang et al. 2003, Williams et 
al. 2004).  The main advantage of these models is 
their relatively fast turn-around times, although their 
predictive capabilities can be limited. As part of the 
Joint Effects Model (JEM), funded by the Department 
of Defense, urban transport and dispersion models 
have been evaluated for their rapid-response 
capabilities. As discussed in Heagy et al. (2007), 
majority of the urban transport and dispersion models 
considered in the evaluation study fell short of 
satisfying the JEM key performance parameter of 
maximum 10-minutes run-time on a desktop 
computer, and the models that were able to satisfy 
the performance parameter were employed at low 
resolutions.  

CFD models have been applied to urban 
environments (Hanna et al. 2006) Thus far, first-
principles based computational fluid dynamics (CFD) 
models have been considered impractical for 
deployment in emergency response operations 
because of their slow computational turn around 
times. Loosely speaking, a general purpose CFD 
code may not give the fastest computational turn-
around time because of the software complexity that 
arises from implementing various methods and 
models to address a wide range of problems in 
different disciplines. CFD codes can benefit from a 
specific implementation for urban environments 
(Burrows et al. 2004). Recently, it has been shown 
that urban CFD simulations can be accelerated 
significantly by a careful implementation of numerical 
methods on Cartesian grids. (Gowardhan et al. 2007; 
Gowardhan 2008). It should be noted a CFD 
simulation does not necessarily translate to better 
predictions. Contaminant dispersion predictions 
depend highly on initial conditions of wind speed and 
direction. Equally important, the choice of turbulence 

model and proper mesh resolutions near solid 
boundaries can have an impact on the predictions.  

There is a strong need to develop rapid-response 
CFD-based contaminant transport and dispersion 
models for first responders. Given the recent 
breakthroughs in both hardware and software for high 
performance computing (Owens et al. 2008), it is 
believed that with a careful selection of numerical 
methods and parallel computing strategies, a CFD 
solution of wind fields and CB agent dispersion within 
complex urban environments can be delivered within 
a time frame that benefits the first responder.  

 
 Graphics Processing Units (GPU) that are 
traditionally designed for graphics rendering have 
emerged as massively-parallel "co-processors" to the 
Central Processing Unit (CPU) (Owens et al. 2008). 
Figure 1 depicts the growing gap in peak 
performance, measured in floating point operations 
per second (FLOPS) between GPU and CPU over the 
last five years. Currently, NVIDIA GPUs outperform 
Intel CPUs on floating point performance and memory 
bandwidth, both by a factor of roughly ten (NVIDIA, 
2008a). Small-footprint desktop supercomputers with 
hundreds of stream processors that can deliver 
teraflops theoretical peak performance at the price of 
conventional workstations have been realized. Figure 
2 presents two desktop supercomputers with different 
GPU and CPU configurations.  
  

Figure 1: Evolution of floating-point performance 
for Intel CPUs and NVIDIA GPUs (courtesy of 
NVIDIA). 
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 Until recently, using the GPUs for general-purpose 
computation was a complicated exercise. A good 
knowledge of graphics programming was required, 
because GPU’s old fixed-function pipeline did not 
allow complex operations (Owens et al. 2007). GPUs 
have evolved into a programmable engine, supported 
by new programming models trying to find the right 
balance between low access to the hardware and 
high-level programmability (Owens et al. 2008). Brook 
programming model, released in 2004 by Stanford 
University, offered one of the first development 
platforms for general purpose GPU (GPGPU) 
programming (Buck et al. 2004). NVIDIA recently 
released a more advanced programming model for its 
own line of GPUs: Compute Unified Device 
Architecture (CUDA). With CUDA, NVIDIA offers a 
common architecture and programming model for its 
own line of GPUs. The C-based application 
programming interface (API) of CUDA enables data-
parallelism through the use of shared memory, but 
also computation parallelism thanks to the 
introduction of the thread and grid concepts (NVIDIA 
2008a).  
 Prior to the introduction of the CUDA and Brook 
programming models, several Navier-Stokes solvers 
have been implemented for the GPU. Harris (2003) 
implemented a 3D solver to create a physically-based 
cloud simulation using the Cg programming language 
from NVIDIA. Due to its relative potential for easy 
parallelization, the Lattice-Boltzman method (LBM) 
has also been implemented in different studies 
addressing complex geometries. In Li et al. (2005), 
GPU implementation of LBM resulted in speedup of 
15× relative to the CPU implementation. Fan et al. 
(2004) implemented the LBM on a GPU cluster to 
calculate winds and contaminant dispersion in urban 
areas. A speedup of 4.6× relative to a CPU cluster 

was achieved in their study, which demonstrates that 
GPU clusters can serve as an efficient platform for 
scientific computing. In Willemsen et al. (2007) and 
Pardyjak et al. (2007) a simple Lagrangian dispersion 
model with prescribed wind fields was implemented 
on the GPU. A substantial speedup relative to the 
existing CPU implementation was demonstrated. 
 The recent literature attests to the compute-
potential of GPU computing with new programming 
models. Numerous studies have adopted the CUDA 
programming model computational problems in 
engineering and sciences at large (NVIDIA 2008b). 
 In the computational fluid dynamics (CFD) field, 
Tolke and Krafczyk (2008) implemented a 3D Lattice-
Boltzman method for flow through a generic porous 
medium. They obtained a gain of up to two orders of 
magnitude with respect to the computational of an 
Intel Xeon 3.4GHz. Brandvik and Pullan (2008) 
mapped 2D and 3D Euler solvers to the GPU using 
BrookGPU and CUDA programming models. For the 
CUDA version of the 3D Euler solver, their 
computations on NVIDIA 8800GTX showed a 
speedup of 16× over the CPU, whereas the 
BrookGPU implementation of the 3D Euler solver 
showed a modest speedup of only 3× on the ATI 
1950XT. Molemaker et al. (2008) developed a multi-
grid method to solve the pressure Poisson equation. 
The CUDA implementation of the multi-grid pressure 
Poisson solver produced a speedup of 55× relative to 
a 2.2MHz AMD Opteron processor26. 
 We envision that a high-fidelity CFD simulation 
capability with a rapid computational turn-around time 
on small-footprint computing systems can transform 
emergency response and hazard zone prediction for 
contaminant dispersion in urban environments. In the 
following, we present the computational performance 
analysis of a Navier-Stokes solver code that we 

Figure 2: Desktop supercomputers for GPU computing research at Boise State University a) Quad-GPU 
platform: NVIDIA S870 Tesla server connected to a high performance workstation with 8 dual-core AMD 
Opteron (8216) 2.4MHz. Total of 512 streaming cores with 6 GB device (GPU) memory. b) Dual-GPU platform: 2 
NVIDIA C870 Tesla boards connected to a Intel Core 2 Duo (E8400) 3.0 GHz. Total of 256 cores with 3GB 
device (GPU) memory. 
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develop specifically for small-footprint desktop 
platforms equipped with multiple GPUs.  

 

2.  MULTI-GPU IMPLEMENTATION 

 Multi-GPU parallel implementation of the present 
incompressible Navier-Stokes solver is explained in 
detail in Thibault and Senocak (2009). To the best of 
our knowledge, the work of Thibault and Senocak 
(2009) is the first CUDA implementation of a 3-D 
incompressible Navier-Stokes solver on multi-GPU 
desktop platforms. In this paper, we briefly 
summarize the main features of the code.   

Second-order accurate central difference scheme 
is used to discretize the advection and diffusion terms 
of the Navier-Stokes equations on a uniform 
staggered grid. First-order accurate, explicit Euler 
scheme is used for the time derivative term. The 
projection algorithm (Chorin, 1968) is adopted to find 
a numerical solution to the Navier-Stokes equation for 
incompressible fluid flows. We use CUDA 
programming model of NVIDIA to implement the 
discretized form of the Navier-Stokes equations on 
desktop platforms with multiple GPUs. 
Communication among GPUs is enabled with POSIX 
threading. 

The main steps of the projection algorithm (Chorin, 
1968) are implemented with separate CUDA kernels, 
and a unique implementation that exploits the 
memory hierarchy of the CUDA programming model 
is suggested in Thibault and Senocak (2009). Kernels 

for the velocity predictor step and the solution of the 
pressure Poisson equation were implemented using 
the shared memory of the device, whereas a global 
memory implementation was pursued for the kernels 
that are responsible to calculate the divergence field 
and velocity corrections and to apply the boundary 
conditions. This unique combination resulted in factor 
of two speedup relative to global memory only 
implementation on the device (Thibault and Senocak, 
2009) 

The GPU computing hardware that is shown in 
Figure 2 was used in this study. A dual-CPU/dual-
GPU platform was built in-house with an Intel Core 2 
Duo (E8400) 3.0 GHz CPU, 4GB of host memory and 
two Tesla C870 boards. Each Tesla board provides 
128 streaming processor cores and 1.5 GB of global 
device memory. A second platform with 8 AMD 
Opteron 2.4 GHz (8216) dual-core CPUs that is 
connected to a Tesla S870 server via two PCIe 16× 
slots provides a total four Tesla GPUs and 16 CPU 
cores. Each GPU board used in this study can deliver 
a theoretical peak performance of 512 GFLOPS, 
according to the manufacturer. These two high 
performance computing platforms with different GPU-
CPU configurations were used to perform speedup 
and multi-GPU scaling analysis. 
 

3.  MESH GENERATION FOR URBAN DOMAINS 

Mesh generation for urban domains can be quite 
tedious depending on the meshing strategy. An 
unstructured mesh strategy may lead to skewed cells 
in complex spaces between buildings, which may 
then cause numerical errors in the solution. A 
practical fast approach has been adopted in Burrows 
et al. (2004) and Gowardhan (2008) to generate 
computational meshes for urban domains. We adopt 
the same approach in this study.  

An Environmental Systems Research Institute 
(ESRI) shape file containing the vertices of polygons 
and their heights is imported into the ArcGIS 
software, and the polygons extruded to their 
elevations. The result is a three dimensional block 
representation of a sample set of buildings. The 
region of interest for atmospheric transport and 
dispersion simulations is then captured within ArcGIS 
software and the subdomain is saved as a shape file. 
Figure 3a shows several blocks from the Oklahoma 
City domain. 

The same shape file is then read into Matlab and 
the points are converted from UTM coordinates to 
latitude and longitude coordinates. A grid resolution is 
provided by the user and the polygons are rasterized 
to a two dimensional matrix with a resolution of dx 
and dy. The two dimensional matrix is then grown into 
a three dimensional matrix with a resolution of dx, dy 
and dz.. Cells within buildings are then flagged to be 
used in the CFD code to impose boundary conditions. 
Figure 3b shows the isosurface visualizaition of the 
flag value and grid distribution in the horizontal plane.

Figure 3: Mesh generation for urban 
environments. a) Visualization of the urban 
domain in ArcGIS b) Isosurface visualization of 
the building flags in Matlab, with a uniform mesh 
of 4m resolution in the horizontal. 
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4.  RESULTS AND DISCUSSIONS 

 In every CFD code development effort care has to 
be taken to validate the correct implementation of the 
governing equations with proper boundary conditions. 
The lid-driven cavity problem (Ghia et al. 1982), in 
which the fluid inside the cavity is driven by motion of 
the lid, is a well-established benchmark case in the 
CFD field. We use the lid-driven cavity problem to 
validate our multi-GPU implementation. 
 Streamlines at steady-state are shown in Figure 
4a. The flow structure inside a cavity for various 
Reynolds numbers is well established. For Re=1000, 
calculated based on the constant lid velocity and 
cavity height, a main circulation is observed at the 
core of the cavity, smaller recirculation zones at the 
bottom corners. The size of these corner vortices 
depends on the Reynolds number. At this Reynolds 
number, the flow is laminar and remains two-
dimensional. Note that we adopt 3D computations to 
assess the computational performance of GPUs for 
large computational problems. Otherwise, the 
simulation can be performed by 2D computations. 
 Figure 4b shows the velocity field taken at the 
middle section in the vertical plane when steady-state 
condition is reached. The present results obtained 
from our multi-GPU CFD code are in excellent 
agreement with the results of Ghia et al. (1982). 
 Figure 5 summarizes our multi-GPU CFD code 
performance relative to the serial CPU version of our 
CFD code. We note that both the GPU and CPU 
versions of the CFD code adopt the same numerical 
methods. The serial code was written in C 
programming language and it was optimized to obtain 

fair comparisons in performance relative to the GPU 
version of our CFD code.  
 Using only a single CPU core, the serial CPU 
version of our CFD code takes 82,930 seconds on 
the Intel Core 2 Duo 3.0 GHz CPU and 218,580 
seconds on AMD Opteron 2.4 GHz CPU to simulate 
the lid-driven cavity problem with a computational grid 
of 1024×32×1024 for 10,000 time steps.  

 

Figure 5: GPU code speedup relative to the 
serial CPU code for a domain of 
1024×32×1024 computational nodes. Quad-
GPU results are currently not available for the 
Intel Core 2 Duo platform, because we do not 
have the hardware available for the present 
study. 
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Figure 4: a) Distribution of velocity magnitude and streamlines at steady-state for Re=1000. Low velocity regions 
are represented in dark blue while high velocity regions are represented in red. b) Comparison of the multi-GPU 
implementation of our CFD code results with benchmark data given in Ghia et al. (1982). 
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The serial CPU version of the CFD code runs faster 
on Intel Core 2 Duo CPU than on AMD Opteron CPU 
because of its larger L2 cache and its better clock 
frequency. On the other hand the execution time for 
the GPU code is barely dependent on the CPU clock 
speed. GPU performance was nearly the same on 
both the Intel and AMD platforms. As a result GPU 
performance relative to the CPU performance is 
better for the AMD Opteron 2.4 GHz platform as 
shown in Figure 5. On our Intel Core 2 Duo platform 

the GPU code performs 13 and 21 times faster than 
the CPU code with one and two GPUs, respectively. 
On the AMD Opteron 2.4 GHz platform the GPU code 
performs 33, 53 and 100 times faster using one, two 
and four GPUs respectively. 

 Figure 6 shows computational speedup with 
respect to different problem sizes. On the AMD 
Opteron platform (Figure 6a), depending on the 
problem size, the quad-GPU performance varies from 
10× to 100× relative to the serial CPU version of the 
CFD code. On the Intel Core 2 Duo platform (Figure 

Figure 6: Single and multi-GPU speedup on the NVIDIA S870 Quad Tesla server relative to a single 
CPU core (AMD Opteron 2.4GHz) b) Intel Core 2 Duo 3.0GHz with dual NVIDIA C870 Tesla boards. 
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6b), the dual-GPU performance varies from 5× to 
21×. The speedup numbers are impressive for large 
problem size, because the arithmetic intensity on 
each GPU increases with problem size, and the time 
spent on data communication with other GPUs 
compared to the time spent on computation becomes 
relatively shorter.  

 We have implemented new kernels in the GPU 
version of our CFD code to impose boundary 
conditions on building surfaces. The implementation 
takes advantage of the flagging approach to detect 
buildings in the computational domain. Figure 7 
shows preliminary results from a low Reynolds 
number flow around three buildings with different 
heights. The snapshot of the velocity magnitude and 
streamlines shows that the current implementation 
can capture the buildings wakes reasonably. Our 
future work will focus on extending the current 
capability to complex urban domains as shown in 
Figure 3 and validate the computational results with 
experimental data. 

5. CONCLUSIONS 

 We have presented a computational performance 
analysis of a Navier-Stokes solver for incompressible 
flows. The solver adopts NVIDIA’s CUDA 
programming model to implement the discretized 
form of the governing equations on desktop 
supercomputers with multiple GPUs. The solver has 
been extended to address flow around complex urban 
geometry. 
 Overall, we have accelerated the numerical 
solution of incompressible fluid flow equations by a 
factor of 100 using the NIVIDIA S870 Tesla server 
with four GPUs. The speedup number is measured 
relative to the serial CPU version of our CFD code 
that was executed using a single core of an AMD 
Opteron 2.4 GHz processor. With respect to a single 
core of an Intel Core 2 Duo 3.0 GHz processor, we 
have achieved a speedup of 13 and 21 with single 

and dual GPU (NVIDIA Tesla C870) platforms, 
respectively. Same numerical methods were adopted 
in both the CPU and GPU versions of the CFD code. 
We have observed that multi-GPU scaling and 
speedup results improve with increasing 
computational problem size, suggesting that 
computationally “big” transport and dispersion 
problems in urban environments can be tackled with 
GPU clusters with multiple GPUs in each node. 
 Finally, our results suggest that multi-GPU desktop 
supercomputers can accelerate CFD simulations of 
transport and dispersion in urban environments 
substantially. It is envisioned that desktop 
supercomputers can serve as a cost-effective on-
demand computing platform to arm the first 
responders with effective rapid-response simulation 
tools. 
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