
Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

J19.2 Rapid-response Urban CFD Simulations using a
GPU Computing Paradigm on Desktop Supercomputers

Inanc Senocak*, Julien Thibault and Matthew Caylor

Boise State University, Boise, ID

∗Corresponding author address: Boise State University
Department of Mechanical & Biomedical Engineering,
Boise, ID 83725-2075, e-mail: senocak@boisestate.edu

1. INTRODUCTION

In the event of chemical or biological (CB) agent
attacks or accidents, first-responders need hazard
prediction data to launch effective emergency
response action. Accurate and timely knowledge of
the wind fields in urban areas is critically important to
identify and project the extent of CB agent dispersion
to determine the hazard-zone. In their 2008 report
(GAO-08-180), U.S. Government Accountability
Office has reported that first responders are limited in
their ability to detect and model hazardous releases
in urban environments. The current set of modeling
tools for contaminant dispersion in urban
environments rely on empirical assumptions with
diagnostic equations (Wang et al. 2003, Williams et
al. 2004). The main advantage of these models is
their relatively fast turn-around times, although their
predictive capabilities can be limited. As part of the
Joint Effects Model (JEM), funded by the Department
of Defense, urban transport and dispersion models
have been evaluated for their rapid-response
capabilities. As discussed in Heagy et al. (2007),
majority of the urban transport and dispersion models
considered in the evaluation study fell short of
satisfying the JEM key performance parameter of
maximum 10-minutes run-time on a desktop
computer, and the models that were able to satisfy
the performance parameter were employed at low
resolutions.

CFD models have been applied to urban
environments (Hanna et al. 2006) Thus far, first-
principles based computational fluid dynamics (CFD)
models have been considered impractical for
deployment in emergency response operations
because of their slow computational turn around
times. Loosely speaking, a general purpose CFD
code may not give the fastest computational turn-
around time because of the software complexity that
arises from implementing various methods and
models to address a wide range of problems in
different disciplines. CFD codes can benefit from a
specific implementation for urban environments
(Burrows et al. 2004). Recently, it has been shown
that urban CFD simulations can be accelerated
significantly by a careful implementation of numerical
methods on Cartesian grids. (Gowardhan et al. 2007;
Gowardhan 2008). It should be noted a CFD
simulation does not necessarily translate to better
predictions. Contaminant dispersion predictions
depend highly on initial conditions of wind speed and
direction. Equally important, the choice of turbulence

model and proper mesh resolutions near solid
boundaries can have an impact on the predictions.

There is a strong need to develop rapid-response
CFD-based contaminant transport and dispersion
models for first responders. Given the recent
breakthroughs in both hardware and software for high
performance computing (Owens et al. 2008), it is
believed that with a careful selection of numerical
methods and parallel computing strategies, a CFD
solution of wind fields and CB agent dispersion within
complex urban environments can be delivered within
a time frame that benefits the first responder.

 Graphics Processing Units (GPU) that are
traditionally designed for graphics rendering have
emerged as massively-parallel "co-processors" to the
Central Processing Unit (CPU) (Owens et al. 2008).
Figure 1 depicts the growing gap in peak
performance, measured in floating point operations
per second (FLOPS) between GPU and CPU over the
last five years. Currently, NVIDIA GPUs outperform
Intel CPUs on floating point performance and memory
bandwidth, both by a factor of roughly ten (NVIDIA,
2008a). Small-footprint desktop supercomputers with
hundreds of stream processors that can deliver
teraflops theoretical peak performance at the price of
conventional workstations have been realized. Figure
2 presents two desktop supercomputers with different
GPU and CPU configurations.

Figure 1: Evolution of floating-point performance
for Intel CPUs and NVIDIA GPUs (courtesy of
NVIDIA).

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

 Until recently, using the GPUs for general-purpose
computation was a complicated exercise. A good
knowledge of graphics programming was required,
because GPU’s old fixed-function pipeline did not
allow complex operations (Owens et al. 2007). GPUs
have evolved into a programmable engine, supported
by new programming models trying to find the right
balance between low access to the hardware and
high-level programmability (Owens et al. 2008). Brook
programming model, released in 2004 by Stanford
University, offered one of the first development
platforms for general purpose GPU (GPGPU)
programming (Buck et al. 2004). NVIDIA recently
released a more advanced programming model for its
own line of GPUs: Compute Unified Device
Architecture (CUDA). With CUDA, NVIDIA offers a
common architecture and programming model for its
own line of GPUs. The C-based application
programming interface (API) of CUDA enables data-
parallelism through the use of shared memory, but
also computation parallelism thanks to the
introduction of the thread and grid concepts (NVIDIA
2008a).
 Prior to the introduction of the CUDA and Brook
programming models, several Navier-Stokes solvers
have been implemented for the GPU. Harris (2003)
implemented a 3D solver to create a physically-based
cloud simulation using the Cg programming language
from NVIDIA. Due to its relative potential for easy
parallelization, the Lattice-Boltzman method (LBM)
has also been implemented in different studies
addressing complex geometries. In Li et al. (2005),
GPU implementation of LBM resulted in speedup of
15× relative to the CPU implementation. Fan et al.
(2004) implemented the LBM on a GPU cluster to
calculate winds and contaminant dispersion in urban
areas. A speedup of 4.6× relative to a CPU cluster

was achieved in their study, which demonstrates that
GPU clusters can serve as an efficient platform for
scientific computing. In Willemsen et al. (2007) and
Pardyjak et al. (2007) a simple Lagrangian dispersion
model with prescribed wind fields was implemented
on the GPU. A substantial speedup relative to the
existing CPU implementation was demonstrated.
 The recent literature attests to the compute-
potential of GPU computing with new programming
models. Numerous studies have adopted the CUDA
programming model computational problems in
engineering and sciences at large (NVIDIA 2008b).
 In the computational fluid dynamics (CFD) field,
Tolke and Krafczyk (2008) implemented a 3D Lattice-
Boltzman method for flow through a generic porous
medium. They obtained a gain of up to two orders of
magnitude with respect to the computational of an
Intel Xeon 3.4GHz. Brandvik and Pullan (2008)
mapped 2D and 3D Euler solvers to the GPU using
BrookGPU and CUDA programming models. For the
CUDA version of the 3D Euler solver, their
computations on NVIDIA 8800GTX showed a
speedup of 16× over the CPU, whereas the
BrookGPU implementation of the 3D Euler solver
showed a modest speedup of only 3× on the ATI
1950XT. Molemaker et al. (2008) developed a multi-
grid method to solve the pressure Poisson equation.
The CUDA implementation of the multi-grid pressure
Poisson solver produced a speedup of 55× relative to
a 2.2MHz AMD Opteron processor26.
 We envision that a high-fidelity CFD simulation
capability with a rapid computational turn-around time
on small-footprint computing systems can transform
emergency response and hazard zone prediction for
contaminant dispersion in urban environments. In the
following, we present the computational performance
analysis of a Navier-Stokes solver code that we

Figure 2: Desktop supercomputers for GPU computing research at Boise State University a) Quad-GPU
platform: NVIDIA S870 Tesla server connected to a high performance workstation with 8 dual-core AMD
Opteron (8216) 2.4MHz. Total of 512 streaming cores with 6 GB device (GPU) memory. b) Dual-GPU platform: 2
NVIDIA C870 Tesla boards connected to a Intel Core 2 Duo (E8400) 3.0 GHz. Total of 256 cores with 3GB
device (GPU) memory.

a)

CPU

Tesla boards

b)

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

develop specifically for small-footprint desktop
platforms equipped with multiple GPUs.

2. MULTI-GPU IMPLEMENTATION

 Multi-GPU parallel implementation of the present
incompressible Navier-Stokes solver is explained in
detail in Thibault and Senocak (2009). To the best of
our knowledge, the work of Thibault and Senocak
(2009) is the first CUDA implementation of a 3-D
incompressible Navier-Stokes solver on multi-GPU
desktop platforms. In this paper, we briefly
summarize the main features of the code.

Second-order accurate central difference scheme
is used to discretize the advection and diffusion terms
of the Navier-Stokes equations on a uniform
staggered grid. First-order accurate, explicit Euler
scheme is used for the time derivative term. The
projection algorithm (Chorin, 1968) is adopted to find
a numerical solution to the Navier-Stokes equation for
incompressible fluid flows. We use CUDA
programming model of NVIDIA to implement the
discretized form of the Navier-Stokes equations on
desktop platforms with multiple GPUs.
Communication among GPUs is enabled with POSIX
threading.

The main steps of the projection algorithm (Chorin,
1968) are implemented with separate CUDA kernels,
and a unique implementation that exploits the
memory hierarchy of the CUDA programming model
is suggested in Thibault and Senocak (2009). Kernels

for the velocity predictor step and the solution of the
pressure Poisson equation were implemented using
the shared memory of the device, whereas a global
memory implementation was pursued for the kernels
that are responsible to calculate the divergence field
and velocity corrections and to apply the boundary
conditions. This unique combination resulted in factor
of two speedup relative to global memory only
implementation on the device (Thibault and Senocak,
2009)

The GPU computing hardware that is shown in
Figure 2 was used in this study. A dual-CPU/dual-
GPU platform was built in-house with an Intel Core 2
Duo (E8400) 3.0 GHz CPU, 4GB of host memory and
two Tesla C870 boards. Each Tesla board provides
128 streaming processor cores and 1.5 GB of global
device memory. A second platform with 8 AMD
Opteron 2.4 GHz (8216) dual-core CPUs that is
connected to a Tesla S870 server via two PCIe 16×
slots provides a total four Tesla GPUs and 16 CPU
cores. Each GPU board used in this study can deliver
a theoretical peak performance of 512 GFLOPS,
according to the manufacturer. These two high
performance computing platforms with different GPU-
CPU configurations were used to perform speedup
and multi-GPU scaling analysis.

3. MESH GENERATION FOR URBAN DOMAINS

Mesh generation for urban domains can be quite
tedious depending on the meshing strategy. An
unstructured mesh strategy may lead to skewed cells
in complex spaces between buildings, which may
then cause numerical errors in the solution. A
practical fast approach has been adopted in Burrows
et al. (2004) and Gowardhan (2008) to generate
computational meshes for urban domains. We adopt
the same approach in this study.

An Environmental Systems Research Institute
(ESRI) shape file containing the vertices of polygons
and their heights is imported into the ArcGIS
software, and the polygons extruded to their
elevations. The result is a three dimensional block
representation of a sample set of buildings. The
region of interest for atmospheric transport and
dispersion simulations is then captured within ArcGIS
software and the subdomain is saved as a shape file.
Figure 3a shows several blocks from the Oklahoma
City domain.

The same shape file is then read into Matlab and
the points are converted from UTM coordinates to
latitude and longitude coordinates. A grid resolution is
provided by the user and the polygons are rasterized
to a two dimensional matrix with a resolution of dx
and dy. The two dimensional matrix is then grown into
a three dimensional matrix with a resolution of dx, dy
and dz.. Cells within buildings are then flagged to be
used in the CFD code to impose boundary conditions.
Figure 3b shows the isosurface visualizaition of the
flag value and grid distribution in the horizontal plane.

Figure 3: Mesh generation for urban
environments. a) Visualization of the urban
domain in ArcGIS b) Isosurface visualization of
the building flags in Matlab, with a uniform mesh
of 4m resolution in the horizontal.

a)

b
)

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

4. RESULTS AND DISCUSSIONS

 In every CFD code development effort care has to
be taken to validate the correct implementation of the
governing equations with proper boundary conditions.
The lid-driven cavity problem (Ghia et al. 1982), in
which the fluid inside the cavity is driven by motion of
the lid, is a well-established benchmark case in the
CFD field. We use the lid-driven cavity problem to
validate our multi-GPU implementation.
 Streamlines at steady-state are shown in Figure
4a. The flow structure inside a cavity for various
Reynolds numbers is well established. For Re=1000,
calculated based on the constant lid velocity and
cavity height, a main circulation is observed at the
core of the cavity, smaller recirculation zones at the
bottom corners. The size of these corner vortices
depends on the Reynolds number. At this Reynolds
number, the flow is laminar and remains two-
dimensional. Note that we adopt 3D computations to
assess the computational performance of GPUs for
large computational problems. Otherwise, the
simulation can be performed by 2D computations.
 Figure 4b shows the velocity field taken at the
middle section in the vertical plane when steady-state
condition is reached. The present results obtained
from our multi-GPU CFD code are in excellent
agreement with the results of Ghia et al. (1982).
 Figure 5 summarizes our multi-GPU CFD code
performance relative to the serial CPU version of our
CFD code. We note that both the GPU and CPU
versions of the CFD code adopt the same numerical
methods. The serial code was written in C
programming language and it was optimized to obtain

fair comparisons in performance relative to the GPU
version of our CFD code.
 Using only a single CPU core, the serial CPU
version of our CFD code takes 82,930 seconds on
the Intel Core 2 Duo 3.0 GHz CPU and 218,580
seconds on AMD Opteron 2.4 GHz CPU to simulate
the lid-driven cavity problem with a computational grid
of 1024×32×1024 for 10,000 time steps.

Figure 5: GPU code speedup relative to the
serial CPU code for a domain of
1024×32×1024 computational nodes. Quad-
GPU results are currently not available for the
Intel Core 2 Duo platform, because we do not
have the hardware available for the present
study.

13

21

33

53

100

N/A
0

20

40

60

80

100

120

1 2 4

Number of GPUs

S
p

ee
d

u
p

 (
x)

Intel Core 2 Duo Intel Core 2 Duo 3.0 GHz (dual core)

AMD Opteron AMD Opteron 2.4GHz (quad CPU)

Figure 4: a) Distribution of velocity magnitude and streamlines at steady-state for Re=1000. Low velocity regions
are represented in dark blue while high velocity regions are represented in red. b) Comparison of the multi-GPU
implementation of our CFD code results with benchmark data given in Ghia et al. (1982).

 b) a)

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

The serial CPU version of the CFD code runs faster
on Intel Core 2 Duo CPU than on AMD Opteron CPU
because of its larger L2 cache and its better clock
frequency. On the other hand the execution time for
the GPU code is barely dependent on the CPU clock
speed. GPU performance was nearly the same on
both the Intel and AMD platforms. As a result GPU
performance relative to the CPU performance is
better for the AMD Opteron 2.4 GHz platform as
shown in Figure 5. On our Intel Core 2 Duo platform

the GPU code performs 13 and 21 times faster than
the CPU code with one and two GPUs, respectively.
On the AMD Opteron 2.4 GHz platform the GPU code
performs 33, 53 and 100 times faster using one, two
and four GPUs respectively.

 Figure 6 shows computational speedup with
respect to different problem sizes. On the AMD
Opteron platform (Figure 6a), depending on the
problem size, the quad-GPU performance varies from
10× to 100× relative to the serial CPU version of the
CFD code. On the Intel Core 2 Duo platform (Figure

Figure 6: Single and multi-GPU speedup on the NVIDIA S870 Quad Tesla server relative to a single
CPU core (AMD Opteron 2.4GHz) b) Intel Core 2 Duo 3.0GHz with dual NVIDIA C870 Tesla boards.

16 19

31 32 33

13

22

45
49

53

10

25

66

83

100

0

20

40

60

80

100

120

64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

S
p

ee
d

u
p

 (x
)

Single GPU

Dual GPU

Quad GPU

8

15

18
19

21

13

10
11 12 12

10

5

-1

4

9

14

19

24

32x32x32 64x32x64 128x32x128 256x32x256 512x32x512 1024x32x1024

Domain size

S
p

ee
d

u
p

 (x
)

Single GPU

Dual GPU

a)

b)

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

6b), the dual-GPU performance varies from 5× to
21×. The speedup numbers are impressive for large
problem size, because the arithmetic intensity on
each GPU increases with problem size, and the time
spent on data communication with other GPUs
compared to the time spent on computation becomes
relatively shorter.

 We have implemented new kernels in the GPU
version of our CFD code to impose boundary
conditions on building surfaces. The implementation
takes advantage of the flagging approach to detect
buildings in the computational domain. Figure 7
shows preliminary results from a low Reynolds
number flow around three buildings with different
heights. The snapshot of the velocity magnitude and
streamlines shows that the current implementation
can capture the buildings wakes reasonably. Our
future work will focus on extending the current
capability to complex urban domains as shown in
Figure 3 and validate the computational results with
experimental data.

5. CONCLUSIONS

 We have presented a computational performance
analysis of a Navier-Stokes solver for incompressible
flows. The solver adopts NVIDIA’s CUDA
programming model to implement the discretized
form of the governing equations on desktop
supercomputers with multiple GPUs. The solver has
been extended to address flow around complex urban
geometry.
 Overall, we have accelerated the numerical
solution of incompressible fluid flow equations by a
factor of 100 using the NIVIDIA S870 Tesla server
with four GPUs. The speedup number is measured
relative to the serial CPU version of our CFD code
that was executed using a single core of an AMD
Opteron 2.4 GHz processor. With respect to a single
core of an Intel Core 2 Duo 3.0 GHz processor, we
have achieved a speedup of 13 and 21 with single

and dual GPU (NVIDIA Tesla C870) platforms,
respectively. Same numerical methods were adopted
in both the CPU and GPU versions of the CFD code.
We have observed that multi-GPU scaling and
speedup results improve with increasing
computational problem size, suggesting that
computationally “big” transport and dispersion
problems in urban environments can be tackled with
GPU clusters with multiple GPUs in each node.
 Finally, our results suggest that multi-GPU desktop
supercomputers can accelerate CFD simulations of
transport and dispersion in urban environments
substantially. It is envisioned that desktop
supercomputers can serve as a cost-effective on-
demand computing platform to arm the first
responders with effective rapid-response simulation
tools.

ACKNOWLEDGMENTS

The authors thank Drs. Massimiliano Fatica, Patrick
Legresley, David Luebke from NVIDIA and Timothy J.
Barth from NASA Ames Research Center for helpful
discussions. Thanks are extended to Marty Lukes
and Luke Hindman of Boise State University for their
help on building our desktop supercomputer and
NVIDIA Corporation and Micron Technology, Inc. for
hardware donations. This work is partially funded by
NASA Idaho EPSCoR Research Initiation grant.

REFERENCES

Brandvik, T. and G. Pullan, 2008: Acceleration of a
3D Euler solver using commodity graphics hardware,”
46th AIAA Aerospace Sciences Meeting and Exhibit,
Reno NV.

Buck, I., T. Foley, D. Horn, J. Sugerman, K.
Fatahalian, M. Houston, and P. Hanrahan, 2004:
Brook for GPUs: Stream computing on graphics
hardware. ACM Transactions on Graphics, 23, 777-
786.

Burrows, D., R. Keith, S. Diehl and E. Hendricks,
2004: A fast-running urban airflow model, 13th
Conference on the Applications of Air Pollution
Meteorology with the Air and Waste Management
Assoc., Vancouver, BC, Canada, 23-28 August.

Chorin, A. J. 1968: Numerical Solution of the Navier-
Stokes equations. Mathematics of Computation, Vol.
22(104), 745-762.

Fan, Z., F. Qiu, A. Kaufman, and S. Yoakum-Stover,
2004: GPU cluster for high performance computing.
Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, IEEE Computer Society,
Washington, DC. p. 47.

Ghia, U., K.N. Ghia, and C. T. Shin, 1982: High-Re
solutions for incompressible flow using the Navier-
Stokes equations and a multigrid method,” J. Comp.
Phys. 48, 387-411.

Figure 7: Preliminary simulation of low
Reynolds numbers flow through an idealized
urban domain simulation using the GPU code.
Snapshot of velocity magnitude and streamlines
are shown.

Eighth Symposium on the Urban Environment
10-15 January 2009, Phoenix Arizona

Gowardhan, A.A., E.R. Pardyjak, I. Senocak and M.J.
Brown, 2007: A CFD based wind solver for a fast
response dispersion model. Seventh Biennial Tri-
Laboratory Engineering Conference, Albuquerque,
New Mexico, May 7-10.

Gowardhan, A., 2008: Towards understanding flow
and dispersion in urban areas using numerical tools,
Ph.D Thesis, University of Utah, UT.

Hanna, S.R, M.J. Brown, F.E. Camelli, S.T. Chan,
W.J. Coirier, O.R. Hansen, A.H. Huber, S. Kim, and
R.M. Reynolds. 2006: Detailed simulations of
atmospheric flow and dispersion in downtown
Manhattan: An application of five computational fluid
dynamics models. Bull. Amer. Meteor. Soc. 87 (12).
1713-1726.

Heagy, J., N. Platt, S. Warner and J. Urban, 2007:
Joint Effects Model Urban IPT, Chemical Biological
Information Systems Conference and Exhibition.
Austin, Texas, 8-11 January.

Li, W., Z. Fan, X. Wei, and A. Kaufman, 2005: “GPU-
based flow simulation with complex boundaries,”
GPU Gems 2, Addison-Wesley, Boston, MA, 747–
764.

Molemaker, J., J. M. Cohen, S. Patel, and J. Noh,
2008: Low viscosity flow simulations for animation.
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, Eurographics Association, Aire-
la-Ville, Switzerland.

NVIDIA 2008a: NVIDIA CUDA Compute Unified
Device Architecture Programming Guide, Version 2.0

NVIDIA, 2008b: CUDA Zone, the resource for CUDA
developers.
http://www.nvidia.com/object/cuda_home.html

Owens, J. D., D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell, 2007: A
survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26, 80-113.

Owens, J.D., M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips 2008: GPU computing.
Proceedings of the IEEE, 96, IEEE Publishing, 879-
899.

Pardyjak, E. R., B. Singh, A. Norgren, and P.
Willemsen, 2007: Using video gaming technology to
achieve low-cost speed up of emergency response
urban dispersion simulations. Seventh Symposium on
the Urban Environment, San Diego CA.

U.S. Government Accountability Office, 2008:
Homeland security: First responders' ability to detect
and model hazardous releases in urban areas is
significantly limited. GAO-08-180.

Thibault J.C. and I. Senocak, 2009: CUDA
Implementation of a Navier-Stokes Solver on Multi-
GPU Desktop Platforms for Incompressible Flows.
47th AIAA Aerospace Sciences Meeting and Exhibit,
Orlando FL. AIAA-2009-758.

Tolke, J. and M. Krafczyk 2008: TeraFLOP computing
on a desktop PC with GPUs for 3D CFD,”
International Journal of Computational Fluid
Dynamics, 22 (7), 443-456.

Wang, Y., J. J. Mercurio, C. C. Williamson, D. M.
Garvey, and S. Chang, 2003: A high resolution, three-
dimensional, computationally efficient, diagnostic
wind model: Initial development report. U.S. Army
Research Laboratory, Adelphi, MD. ARL-TR-3094.

Willemsen, P., A. Norgren, B. Singh and E.R.
Pardyjak, 2007: Development of a new methodology
for improving urban fast response Lagrangian
dispersion simulation via parallelism on the graphics
processing unit. Proceedings of the 11th International
Conference on Harmonisation within Atmospheric
Dispersion Modelling for Regulatory Purposes,
Queen’s College, University of Cambridge, United
Kingdom, July 2-5.

Williams, M. D., M. J. Brown, B. Singh, and D.
Boswell, 2004: QUIC-PLUME Theory Guide, Los
Alamos National Laboratory, LA-UR-04-0561.

