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1. INTRODUCTION 
 
Global Positioning System (GPS) radio-occultation 
(RO) is provided as a global sounding technique 
for obtaining atmospheric profiles by integrating 
them in global models for numerical weather 
prediction and for climate change studies. The 
radio occultation system employs GPS receivers 
placed on a Low-Earth Orbit (LEO) satellite to 
sound the Earth’s troposphere and ionosphere 
evaluating the additional delay affecting a radio 
signal when passing through the atmosphere due 
to the refractivity index magnitude and its 
variations (Gorbunov and Sokolovskiy 1993; Rius 
et al. 1998). GPS radio-occultations probe the 
atmosphere operating under all-weather conditions 
because the GPS signal wavelength do not scatter 
by clouds, aerosols, and precipitation, preserving a 
relatively high vertical resolution throughout the 
depth of the atmosphere associated with the limb-
viewing geometry. This technique is limited by the 
horizontal resolution due to the Fresnel diffraction-
limited pencil-shaped sampling volume of each 
measurement: each one has a horizontal 
resolution of about 200 km in the direction along 
the occulted link and a resolution of 1 km or better 
in the cross-link and vertical directions (Kursinski 
et al. 1997). 
In this paper we have proposed a retrieval method 
based on neural networks to achieve atmospheric 
profiles from RO in wet conditions without using 
temperature profile at each GPS occultation from 
independent observations (i.e. radiosoundings or 
ECMWF data). We have trained three neural 
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networks with inputs consisting of refractivity 
profiles computed from the occultation parameters 
observed by the COSMIC (Constellation Observing 
System for Meteorology Ionosphere and Climate) 
Microsat Constellation satellites provided by the 
COSMIC Data Analysis and Archive Center 
(CDAAC) of Boulder (Colorado). The network 
outputs are the dry and wet refractivity profiles 
together with the dry pressure profiles obtained 
from the contemporary European Centre for 
Medium-Range Weather Forecast (ECMWF) 
analysis data. We have performed the neural 
network training and the following independent test 
over the entire ocean area between Tropics by 
using data on summer 2006, from July 17 to 
August 18. The output decomposition of the 
refractivity components together with the 
estimation of the dry pressure allow to retrieve 
temperature and pressure of water vapor eluding 
the necessity to know the temperature profile from 
independent sources of  information.  

 

2. NEURAL NETWORK: INPUT AND TARGET 
RETRIEVAL 

 
GPS radio signals passing through the 
atmosphere are refracted due to the vertical 
refractive profile: the overall effect of the 
atmosphere can be characterized by a total 
bending angle α, an asymptotic impact parameter 
a and a tangent radius rp (Kursinski et al. 1997).  
By considering the assumption of local spherical 
symmetry, the refraction index profile n can be 
retrieved from measurements of α as a function of 
a during an occultation by using an Abel 
transformation as in (Fjeldbo et al. 1971): 
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where arp = n(rp)⋅rp is the impact parameter for the 
ray whose tangent radius is rp. The refractivity 
profile used as input for the neural networks 
training and the successive independent test is 
then N=(n-1)⋅106. 
The targets for the neural networks training and 
the successive validation of the neural networks 
outputs were obtained using geopotential, 
temperature, specific humidity and logarithmic 
surface pressure from ECMWF 91 model levels 
analysis profiles (ECMWF website).  
From these profiles, the atmospheric refractivity N 
at microwave wavelength were computed by 
(Smith and Weintraub 1953): 
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where Pd is the pressure of dry air in mbar, Pw the 
partial pressure of water vapor in mbar, T is the 
atmospheric temperature in Kelvin. To obtain T, Pd  

and Pw profiles given N, the additional constraints 
of ideal gas and hydrostatic equilibrium laws are 
required, respectively as:  
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where ρ(r) is the air density in kg m-3, P=Pd+Pw, Md 
and Mw are respectively the mean molecular mass 
of dry air and water vapor, R0 is the universal gas 
constant, g the gravitation acceleration. Given N, 
we have a system of three equations and four 
unknowns (T, Pd, Pw and ρ) and therefore it is 
necessary to have an independent knowledge of 
one of the four parameters, usually the 
temperature, to solve the atmospheric profiling 
problem (Kursinski et al. 1997; Kursinski and Hajj 
2001; Vespe et al. 2002). 
 
2.1 Selection Of COSMIC GPS Radio 

Occultation And Corresponding ECMWF 
Data 

 
In this paper, we have collected 1041 COSMIC 
GPS RO events provided by CDAAC (COSMIC 
website), covering the inter-tropical ocean area 
from July 17 to August 18, 2006. The COSMIC 
GPS RO and the corresponding ECMWF 
observations above the ocean area have been 
selected on the basis of the land/sea flag included 

in the ECMWF data, and co-located by considering 
a maximal interval of 1 hour and a maximal 
geographical coordinate distance of 0.5° between 
the terrestrial coordinates of the occultation points1 
and those provided in ECMWF data.  
 

3. NEURAL NETWORK: ATMOSPHERIC 
PROFILING 

 
We have designed three neural networks to solve 
the atmospheric profiling problem from GPS RO 
overcoming the constraint of temperature profile 
availability at each GPS occultation: the neural 
network predictors are the refractivity profiles N(r) 
provided by the RO technique using (1) and the 
targets are the corresponding dry Nd(r) and wet 
Nw(r) refractivity profiles and the dry pressure 
profiles Pd(r) computed from ECMWF data. Nd(r) 
and Nw(r) are respectively the first and second 
terms on the right-hand side of (2).  
We have performed the neural network training 
and the following independent test over the entire 
ocean area between Tropics by using the available 
data set of 1041 refractivity profiles on summer 
2006, choosing randomly, 937 profiles for the 
training and the remaining 104 for the independent 
test of the network, that represent 90% and 10% of 
the entire available dataset respectively. Since 
each profile has 689 fixed altitude levels, 
representing the atmosphere from 0.9 to 20 km, 
we have pre-processed the input and target 
features using Principal Component Analysis 
(PCA) by expanding the 689-level refractivity 
profiles on a basis of empirical orthogonal 
functions called principal components (Smith and 
Woolf 1976). By using the PCA technique we have 
reduced the number of descriptive profile 
parameters by exploiting the correlation among 
values at different altitudes. We have used only 22 
principal components for the total refractivity 
instead of the original 689 levels, representative of 
the 99.9% of the total variance of the original data 
(Demuth et al. 2008). Concerning the neural 
network targets, the number of components for dry 
refractivity, wet refractivity and dry pressure 
profiles are 17, 20 and 10, respectively. 
We have considered the profile data set starting 
from 0.9 km above the Earth surface since 
approximately only the 50% of the GPS 
occultations reaches lower levels. 
 

                                                 
1 The occultation point is defined as the point on the 
Earth’s surface to which the retrieved refractivity profile 
is assigned, located under the perigee point of the 
bended ray (Kuo et al. 2004) 



3.1 Early Stopping Approach 
 
For the training session of the neural networks, we 
have applied the early stopping technique, useful 
for determining the optimal number of training 
epochs. Then we have divided the training data set 
(937 events) in three subsets: the training subset 
used for the learning itself, the validation subset 
and the test subset used to improve the ability of 
generalization of the neural network, by assigning 
them randomly the 70% (655 events), the 15% 
(141 events) and the 15% (141 events) of the 
whole data set, respectively. 
The considered feed-forward neural networks have 
been chosen among the possible combinations on 
the basis that they exhibit the lower root mean 
square (RMS) error computed comparing the 
network outputs of the test session with the 
corresponding ECMWF profiles, where the test 
session employs the 104 refractivity profiles not 
used in the training phase. The best neural 
network topologies in terms of performance for the 
dry refractivity, wet refractivity and dry pressure 
retrieval are reported in Table 1. 
The hidden layers are characterized by tan-
sigmoid transfer function while the output layers by 
linear transfer function. Instead of the standard 
back-propagation, for a fast training, we used the 
Bayesan regularization process according to 
Levenberg-Marquardt algorithm for a fast training 
(Hagan and Menhaj 1994). 
 

EARLY STOPPING PCA 

 INPUT HL OUTPUT 

N Dry 22 8 17 
N Wet 22 10 20 
P Dry 22 5 10 

Table 1: Best neural network topologies named N Dry 
(for dry refractivity estimation), N Wet (for wet 
refractivity estimation) and P Dry (for dry pressure 
estimation): input, HL and output columns report the 
number of neurons for the input, hidden layer and 
output, respectively  

4. RESULTS 
 
4.1 Refractivity And Pressure Estimation By 

Neural Network  
 
As shown in Figure 1, the neural networks 
contribute slightly to reduce the RMS error 
computed between refractivity profiles N obtained 
using Abel transformation, that are the inputs for 
the training of neural networks and the 
corresponding ECMWF N refractivity profiles, that 

we assume here and in the following as the true 
climatological variability. 
Considering N estimated by the neural networks, 
i.e. the autotest result, the vertically averaged RMS 
error is 2.78 (N unit) while the corresponding 
vertically averaged RMS error of the refractivity 
profiles N obtained from Abel transformation is 
3.58 (N unit). The mean standard deviation of the 
entire ECMWF database is 6.13 (N unit). 
Nd, Nw and Pd retrieved as outputs of the neural 
networks, employing as input an independent set 
of 104 refractivity profiles N obtained from Abel 
transformation, exhibit the profiles of RMS error 
(continuous line) shown in Figure 2, Figure 3 and 
Figure 4 respectively, superimposed to the 
corresponding ECMWF standard deviation profiles 
(dashed line). The RMS error is computed 
comparing the network outputs with the 
corresponding ECMWF profiles. 
The retrieved profiles using neural networks 
approach appear more consistent with the real 
state of the atmosphere with respect to the 
corresponding ECMWF database first guess. 
The choice to train the networks with three outputs 
is justified by the necessity to retrieve atmospheric 
profiles overcoming the constraint of temperature 
profile availability at each GPS occultation, as 
required to solve the system of (2), (3), (4). 
Also, we have chosen to estimate the dry pressure 
Pd from the network instead of solving the ideal 
gas and hydrostatic equilibrium laws in dry 
conditions since the error introduced by the neural 
networks is significatively lower with respect to the 
one exhibited after the integration of the (4). 

 
Figure 1: Neural network autotest (937 occultations): 
profile of RMS error for N  (continuous line) obtained as 
output of the neural network training, profile of RMS 
error N from Abel transformation (dotted line) and 
ECMWF standard deviation profile (dashed line) 



 
Figure 2: Neural network independent test (104 
occultations): profile of RMS error for Nd (continuous 
line) and ECMWF standard deviation profile (dashed 
line) 

 
Figure 3: Neural network independent test (104 
occultations): profile of RMS error for Nw (continuous 
line) and ECMWF standard deviation profile (dashed 
line) 

 
Figure 4: Neural network independent test (104 
occultations): profile of RMS error for Pd (continuous 
line) and ECMWF standard deviation profile (dashed 
line) 

 

4.2 Temperature And Pressure Water Vapor 
Estimation 

 

With the availability of Nd, Nw and Pd, at first we can 
solve for temperature T in a straightforward way 
from the dry refractivity relation 
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and then for partial pressure water vapor Pw from 
the wet refractivity relation 
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instead of solving the system of (2), (3), (4). 
In Figure 5 and Figure 6 the profiles of RMS error 
for respectively T and Pw (continuous line) are 
shown superimposed to the corresponding 
ECMWF standard deviation profile (dashed line).  
In Table 2 the averaged RMS error for the 
estimated profiles  and the corresponding mean 
ECMWF standard deviation are shown.  

 
Figure 5: Neural network independent test (104 
occultations): profile of RMS error for T  (continuous 
line) and ECMWF standard deviation profile (dashed 
line) 

 
Figure 6: Neural network independent test (104 
occultations): profile of RMS error for Pw (continuous 
line) and ECMWF standard deviation profile (dashed 
line) 

 

 



 Vertically 
Averaged 
RMS error 

Mean Standard 
Deviation 
ECMWF 

Dry Refractivity 0.76 N-unit 1.21 N-unit 
Wet Refractivity 2.73 N-unit 6.34 N-unit 

Dry Pressure 1.61 mbar 2.55 mbar 
Wet Pressure 0.54 mbar 1.27 mbar 
Temperature 1.53 K 2.22 K 

Table 2: Neural network independent test (104 
occultations): vertically averaged RMS error for 
estimated profiles and corresponding mean ECMWF 
standard deviation 

5. SUMMARY 
 
The results have shown good performances of the 
neural networks using the principal component 
analysis for a fast and less expensive approach, 
exhibiting a fairly good accuracy for temperature 
and partial pressure of water vapor profiles.  
The purpose of our analysis consists in showing 
the possibility to retrieve each atmospheric 
parameter included the wet ones only from RO 
refractivity, and then the ability to increase the 
atmospheric observations, integrating them 
successively in the accuracy models, thanks to a 
wide spatial coverage of RO soundings on the 
Earth. The bound of this approach is that the 
informative contribution brought by RO soundings 
is in some way connected to the necessary 
employment of the ECMWF atmospheric model 
profiles as targets for the neural network training. 
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