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Abstract

It is sometimes useful to create a statistical model to simulate streamflow
based on precipitation estimates over a basin. Because the model is indepen-
dent of physical descriptions of the basin or initial states such as soil moisture
conditions, soil infiltration characteristics, or land surface roughness, it can be
used to justify the complexity required in a hydrologic model to adequately
simulate streamflow.

In this paper, we developed a data-driven streamflow prediction model us-
ing observations of rainfall and runoff over the heavily instrumented Ft. Cobb
basin in western Oklahoma. The statistical model was developed for a dataset
of ten hydrologic events in which there was complete coverage by the KOUN
polarimetric research radar and streamflow observations on three subcatch-
ments in the basin. The data-driven model was evaluated for each event by
considering the rainfall/runoff observations from the other nine, independent
events. In this paper, we focus on model results from Tropical Storm Erin
which produced streamflow having a return period greater than 100 years.
Future work will compare results from the data-driven approach to more com-
plex and distributed-parameter models. Inadequacies highlighted by the data-
driven approach will justify the added complexity of physics and spatially dis-
tributed parameters represented in the conceptual models.

1. Introduction

The Ft. Cobb watershed was added to the
Agricultural Research Service’s (ARS) wa-
tershed research network in 2005 to ad-
dress research objectives related to con-
stituents that impair water quality and
wildlife habitat. The basin is 813 km? in
area and features a Micronet, a network of
15 stations that measure air temperature,

rainfall, relative humidity, solar radiation, soil
temperature at four depths, and soil water
content at three depths. A majority of the
basin is within 100 km of the KOUN radar,
the WSR-88D prototype equipped with the
capability to transmit and receive at hori-
zontal and vertical polarization. We have
archived polarimetric radar datasets for ten
hydrologic events occurring over a three-
year period, including an extreme event

*Corresponding author: lakshman@ou.edu 'The Cooperative Institute of Mesoscale Meteorological
Studies (CIMMS), University of Oklahoma, 2The National Severe Storms Laboratory, Norman, OK, >McGill

University, Montreal, Canada



from a tropical storm that had a return pe-
riod greater than 100 years. The duration
of rainfall for these events ranged from 6-61
hours, and the characteristics of the storms
included intense convective supercells with
severe hail, squall lines with trailing strat-
iform rain, and tropical rain. The high-
density rain gauge network was used to
evaluate remote-sensing and in-situ rainfall
algorithms. Six different polarimetric rain-
fall algorithms employing reflectivity, differ-
ential reflectivity, specific differential phase,
and combinations have been proposed and
are now compared to reflectivity-only and
gauge-only algorithms. The first level of
comparison simply evaluated differences
between the algorithms’ rainfall estimates
and collocated rain gauge accumulations.
The next evaluation considers the hydro-
logic sensitivity of using these different rain-
fall inputs into a suite of hydrologic mod-
els. In this paper, we concentrate on fitting
a finite impulse response function to nine
events and using that to build an empirical
hydrological model to be evaluated on TS
Erin.

The term genetic algorithm (GA) is ap-
plied to any search or optimization algo-
rithm that is based on Darwinian princi-
ples of natural selection. A key concept
in genetic algorithms is that of a chromo-
some. A chromosome contains a group of
numbers that completely specifies a candi-
date during the optimization process (Gold-
berg 1989; Lakshmanan 2000). The most
fit members (the ones for which fitting er-
ror is least) are more likely to be propa-
gated into the next generation. Propagation
takes two forms: crossover, where the new
chromosome consists of parts of two chro-
mosomes in the current generation, and
mutation where a chromosome in the cur-
rent generation is subtly modified. The
crossover points and mutated numbers are
chosen randomly. It has been shown (Gold-
berg 1989) that the process of selecting the

most fit members of a generation to propa-
gate results in a steadily improving popula-
tion i.e. optimization. In addition to the ge-
netic algorithm, we used simulated anneal-
ing (Metropolis et al. 1953) to move the top
10% of a generation to their nearest local
minima.

2. Method

The basin was divided into three bands
according to terrain elevation, and the
rainfall within each band was estimated
using polarimetric radar using six differ-
ent techniques, including those proposed
by Ryzkhov et al. (2005) and Bringi and
Chandrasekar (2001). A rain gauge anal-
ysis field was also supplied to the model
by analyzing the Micronet rain gauge ac-
cumulations using inverse-distance weight-
ing with a "leave one out” optimization step.
Average rainfall within each band are used
to simulate streamflow at three basin sub-
catchments.

A model that simply tries to predict
the streamflow based on observations at a
snapshot in time will not work because the
streamflow is based on rainfall over a time
interval. It is not enough to use rainfall esti-
mates at just the current time.

Hence, we chose to model the stream-
flow as a finite-impulse response (FIR)
model (Brown and Hwang 1997). The
model chosen was of this form:
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where S(t) is the estimate of the streamflow
attime ¢t and FE, is a time series of measure-
ments of rainfall over the k' band. There
are three parameters for each of n bands:
Ok, ar and 7,. The impact of a band is
given by i, the time delay between rainfall
at the k' band and the time that water from



it reaches the stream is given by 7, while the
decay rate is given by «y.

It may help the reader to gain a feel for
Equation 1 if we were to consider the re-
sponse of the function to an impulse re-
sponse i.e. suppose there were to be rain-
fall of E, at time ¢ = 0 and no rainfall after
that. The streamflow that would result be-
cause of this would begin at ¢t = 7, reach
a peak and then decay exponentially as
shown in Fig. 1. Since any digital series of
measurements can be considered a sum of
such Ey(7), the resulting streamflow is the
sum of curves of the form shown in Fig. 1.
The smaller the «, the slower the curve de-
cays. The larger the 3, the faster and higher
it ramps up. The larger the 7, the greater the
delay before the effect of rainfall shows up
in the streamflow.

We used n = 3, i.e. 3 bands in all the
work presented here. To fit this model to
streamflow observations, it is necessary to
estimate the parameters «y, 3, and 7, that
minimize some measure of error. We chose
to use the mean-square-error as the crite-
rion to minimize.

A conceivable way to accomplish this
would be to take advantage of the fact the
Fourier transform of a convolution of two
data sets is the product of the Fourier trans-
forms of the two data sets. The Fourier
transform of S(t) follows the form of:

1
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where F() is the Fourier transform, u(¢) the
unit step function and j the square root of
—1. wu(t) is required in order to maintain
causality. As can be seen, the Fourier trans-
form of the model would be a complex, non-
linear function of f. Thus the problem be-
comes one of generalized non-linear opti-
mization of a complex dataset.

A more tractable approach is to work
within the time domain itself. To do so, it
is enough to realize that if o and 7, are

known, the parameters b, can be estimated
using linear regression. A genetic algorithm
was used to create reasonable values of oy,
and 7. Then, linear regression was used to
compute the best estimate of 5. The result-
ing square error was used to determine the
fitness of «; and 7, for future generations
of the genetic algorithm.

3. Results

The Ft. Cobb watershed is 813 km? in area
and has elevations varying from 383-565 m.
Each of the three subcatchments were sub-
divided into three topographic bands where
each band has equal area.

The watershed is fortuitously situated
within two observational networks. Two Ok-
lahoma Mesonet sites (FTCB and HINT)
are located on the sides of the water-
shed and are capable of measuring stan-
dard meteorological variables as well as
soil temperature and moisture at three
depths. In addition, fifteen ARS-owned
and Mesonet-operated Micronet stations
are located completely within the water-
shed. River discharge is measured by three
USGS stream gauges in the basin having
catchment areas of 75, 154, and 342 km?;
the latter two are small enough to be con-
sidered flash flood basins.

A majority of the watershed lies within
100 km of the WSR-88D prototype of an
S-band polarimetric radar (KOUN) located
in Norman. 15-min rainfall accumulations
were estimated from the radar over the en-
tire watershed and then averaged within
each of the topographic bands. Thus, at ev-
ery time instant, there were three estimates
of rainfall within each subbasin. Time series
of rainfall estimates were used to simulate
streamflow.

Training of the model was carried out
separately on nine events:

e 12-16 Jun 2005: Maximum rainfall ac-



cumulation of 96 mm.

e 30 Sep - 3 Oct 2005: Maximum rainfall
accumulation of 60 mm. Several se-
vere hail reports were associated with
this event.

e 14-17 Jun 2007: Maximum rainfall ac-
cumulation of 201 mm. Several se-
vere hail reports were associated with
this event.

e 20-23 Jun 2007: Maximum rainfall ac-
cumulation of 72 mm.

e 27 Jun - 2 Jul 2007: Maximum rainfall
accumulation of 120 mm.

e 2-4 Mar 2008: Maximum rainfall ac-
cumulation of 32 mm, with several se-
vere hail reports and tornadic storms.

e 31 Mar -7 Apr 2008: Maximum rainfall
accumulation of 74 mm.

e 7-13 May 2008: Maximum rainfall ac-
cumulation of 81 mm.

e 9-13 Jun 2008: Maximum rainfall ac-
cumulation of 78 mm.

The empirical hydrologic model is an en-
semble of nine functions of the form of
Equation 1. The fitted functions closely
matched the observed streamflow, as illus-
trated in Fig. 2 for the 12-16 June 2005 cal-
ibration case.

The ensemble was independently eval-
uated on the 18-20 Aug 2007 case (Tropi-
cal Storm Erin). Maximum rainfall accumu-
lation was 307 mm in 24 hr which resulted
in significant flooding claiming two lives.

The set of fitted functions based on the
individual FIR functions with rainfall inputs
from the synthetic algorithm of (Ryzkhov
et al. 2005) encompassed the extreme
event quite well for the 342 km? catchment

(upper-left panel in Figure 3), which is im-
pressive considering no events of this ex-
treme magnitude were included in the train-
ing data set. Figure 3 also indicates the skill
in simulating runoff apparently decreases
with smaller basin sizes. From this initial
study, we can infer that additional complex-
ity in hydrologic modeling e.g. inclusion of
initial soil moisture conditions, distributed
soil types and land cover roughness values,
etc. may be warranted at the flash flood
scale whereas simplistic, parsimonious ap-
proaches are sufficient for larger basins.

In considering the hydrologic model sen-
sitivity to different inputs, simulations using
the synthetic algorithm were more skillful
than those using the conventional, R(Z) al-
gorithm and rain gauge inputs. These dif-
ferences were more noticeable at smaller
basin scales. This suggests the impact of
upgrading the NEXRAD network with polari-
metric capabilities will be significant to hy-
drologic prediction, especially at the flash
flood scale.

We plan to extend this work to evalu-
ate hydrologic modeling skill by iteratively
adding complexity to the FIR model and de-
termining which variables or parameters are
needed at each subcatchment scale. In ad-
dition, we will compare results to those from
conceptual models having distributed pa-
rameters and continuous soil moisture ac-
counting. Ultimately, we will arrive at an
ensemble of hydrologic simulations with un-
certainty bounds based on performance-
weighted inputs and models.
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Figure 1: The finite impulse response (FIR) transfer function. The solid curve shows
the effect of a unit of rainfall at ¢ = 0 in band £ = 0 and zero rainfall everywhere else.
The dashed and dotted curves show the effects of increasing beta, decreasing alpha and
increasing tau from the baseline parameters. The parameters themselves are shown in

the legend

Storms Laboratory (NSSL) or the U.S. De-
partment of Commerce.
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Figure 2: The FIR function is capable of being fit to closely match observed streamflow
based on input rainfall. The input rainfall (green), observed streamflow (black) and simu-
lated streamflow (dark red) at a USGS stream gauge with a 342 km? catchment area for
the 12-16 Jun 2005 event are shown.
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Figure 3: Radar-derived rainfall from the synthetic algorithm (green), observed stream-
flow (black), and the ensemble of data-driven FIR simulations of streamflow (blue) for an
independent test event (Tropical Storm Erin) at 3 USGS stream gauges (USGS ID noted
at top of each panel). The best member of the ensemble, according to Nash-Sutcliffe
score (Nash and Sutcliffe 1970), is shown by the dark red line. Note that even though ex-
treme events were not part of the training sample, this data-driven approach does manage
to capture the streamflow that would result from 308 mm of maximum rainfall observed in
TS Erin.



