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1. INTRODUCTION 
 

Urbanization in the post-industrial revolution era, 
especially the recent rapid urban growth known as the 
Brown Revolution, has brought about unprecedented 
anthropogenic stressors that some believe may 
change the functioning and structure of the Earth 
system or a part thereof (Hunt et al. 2007). Stressors, 
either sustained or spasmodic, can topple the 
operating regime of a natural system to a new, even 
perhaps an undesirable, state upon exceeding certain 
forcing thresholds (Allenby & Fink 2005; Folke et al. 
2004; Cumming & Collier 2005). One such stressor is 
the Urban Heat Island (UHI); it is a result of dense 
built infrastructure of cities that absorbs and traps 
solar- and traffic-generated heat and retains it for 
periods longer than natural surfaces because of the 
high heat capacity of engineered material such as 
concrete and asphalt. Since the early work of Oke 
(1982), there is mounting evidence that urban 
geometry and thermal properties of surface material 
in urban areas (i.e., land use) are the major causes of 
UHIs. The urban geometry is characterized by several 
methods: (i) the canyon (a three-dimensional space 
bounded by a street and the buildings that abut it) 
geometries, measured in terms of the building height 
to street width ratio; (ii) the Sky View Factor (SVF), 
which signifies the fraction of sky dome visible from a 
given outdoor point; and (iii) a “compactness index”, 
which is defined as the ratio of building surface area 
(excluding the plan area) to the surface area of a 
cube that has the same volume as the building. For 
micro-scale phenomena the urban geometry is more 
important, but at the meso-scale both the geometry 
and surface thermal characteristics play an equal role 
(Todhunter, 1990). Additional contributors to the UHI 
are anthropogenic heat (heat waste from combustion 
and metabolism), (ii) Urban ‘greenhouse’ effect 
(increased incoming long-wave radiation from polluted 
urban atmosphere), (iii) Evapotranspiration loss 
(reduction of green areas in cities lead to more 
sensible than latent heat transfer), and (iv) wind 
shelter (reduced ability of wind to carry heat either as 
sensible or latent turbulent heat flux. 

There has also been a change of lifestyle among 
urban dwellers in recent times, especially in the 
medium and high-income groups, who spend more 
time indoors than outdoors (Ahmed, 2003). In the face 

of increasing discomfort in the outdoors, one could 
expect more human activities to occur indoors, which 
might necessitate greater use of air-conditioning, 
which in turn will exacerbate outdoor temperatures as 
excess heat is emitted to the urban air (Baker et al., 
2002). Another consequence is the increase of water 
usage (Guhartakurta et al., 2005). This is especially 
problematic in hot, dry areas where water resources 
are scarce. Furthermore, UHIs add to the urban 
mortality/morbidity concerns. While heat waves in 
general are major health hazards, urban areas 
worsen these problems, even in temperate cities 
during hot summers. Also note that the dynamics of 
the cities is dependent on tightly coupled, highly 
sophisticated networks of infrastructure, which are 
vulnerable to failure and produce environmental 
impacts through their inherent complexities. Coupling 
causes new behaviors as well as new modes and 
mechanisms of failure and vulnerability, which are 
called emergent behaviors (complex outcomes from 
simple interactions; Watkins & Freeman 2008). UHI is 
one of such emergent behaviors, wherein mainly the 
transportation, built and energy infrastructures interact 
with the environment, and the results can be of 
undesirable environmental consequences. 

The rapid urbanization in the Phoenix area since 
the 1950’s has created an undesirable heat island, 
and in some areas it is as large as 11oC (Brazel et al. 
2000, 2005; Emmanuel & Fernando 2007; Fernando 
2008). Large, energy-intensive indoor air-conditioned 
spaces are common in Phoenix (Eagan 2007), which 
pump heat to the urban atmosphere and increase 
outdoor temperatures, thus creating a positive 
feedback on energy use. Beyond certain temperature 
exposure thresholds, some vegetation types are 
expected to disappear and airflow patterns may 
change, thus adversely affecting the microclimate and 
air quality. The UHI obviously bears upon thermal 
comfort of humans, whose bodies operate most 
efficiently in the ambient temperature range 20-27°C 
and humidity 35-60%. Above 35-40°C, humans are 
susceptible to both acute and chronic effects (fainting, 
heat strokes, cramps and even death) and 
physiological responses thereof may spur productivity 
loss in workplace (NIOSH 1986). UHI in Phoenix also 
raises environmental justice issues (i.e., a 
disproportionate share of environmental burdens that 
poor, disadvantaged and minority communities bear), 



given that tribal (American Indian) lands are located 
contiguous to Phoenix metropolis. These tribal 
nations may bear the brunt of UHI and changes of 
pollution transport patterns, for which they are not 
responsible (Watson & Overberg 2008). 

Researchers at ASU are addressing Phoenix UHI 
issues on multiple fronts, and the work reported in this 
paper deals with the physical aspects of UHI 
development. A laboratory program was conducted to 
delineate the fluid mechanical scaling involved, an 
urbanized meso-scale model was used to better 
capture the UHI effects in the area and field studies 
were conducted to study micro-climatic aspects of the 
UHI. 

 
2. SURFACE CONVERGENCE VELOCITY SCALE 
 

The intensity of UHI is customarily expressed in 
terms of the characteristic temperature difference

 
 

ΔTu-r between the urban area Tu and its natural 
surroundings Tr,   ΔTu-r = Tu – Tr, and its magnitude 
depends on a myriad of factors. Synoptic (regional-
scale) winds cause rapid advection and mixing of air, 
leading to the obliteration of UHI. Areas with 
topographic variations (complex terrain), in addition, 
show significant local thermal circulation consisting of 
slope and valley winds (Whiteman 2000), which also 
affects UHI. In urban climate studies, ΔTu-r is 
approximated by simple empirical formulae that take 
into account the population P (a measure of 
anthropogenic activities) and the background wind 
field U. With regard to the velocity fields induced by 
the UHI, consider the formation of a plume of 
diameter D and surface temperature Tp. The 
temperature of the surrounding surface is To. The 
interest here is the convergence flow near the surface 
(in the atmosphere, the first few tens of meters), 
which in general is a function of height. The governing 
parameters for the problem are the buoyancy of the 
source gα(Tp – To) = gαΔTS, the buoyancy frequency 
of the background stratification N, the kinematic 
viscosity ν  and the source diameter D. After some 
manipulations and simplifications, the surface 
convergence velocity Ur can be written as 
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A laboratory experiment was conducted to study 
the validity of (1) by heating an isolated patch of the 
bottom of a tank of diameter D, and the results are 
shown in Figure 1. The results confirm the 

convergence velocity scale ,)DTg(U /
rur
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and with a proportionality constant of about 0.08 the 
absolute convergence velocity can be estimated. 

 

Figure 1: A plot of the proposed convergence velocity scale 
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3. PREDICTION OF UHI ON THE MESO-SCALE 
 

Conventional meso-scale models treat urban 
areas with one or a few land-use classes, which are 
inadequate to capture details of processes occurring 
near the ground, especially in the urban roughness 
surface layer. Most conventional models specify 
urban elements using the roughness approach, where 
the Monin-Obukhov theory is used to specify heat and 
momentum fluxes in the surface layer. Nevertheless, 
conditions near an urban surface are far removed 
from that required for the MO theory to be valid. To 
remedy this, the Drag Approach has been advanced 
(Dupont et al. 2004), where the urban influence is 
specified by a modified momentum, energy and 
turbulence equations, while paying lesser regard to 
MO parameterizations. As a part of our work, an 
urbanized version of the meso-scale model MM5 
developed by DuPont et al. (2004) (MM5-U) was 
employed. This model was evaluated against data 
taken from the Phoenix area, during three field 
campaigns conducted in 2001, 2006 and 2007.  Some 
of the parameterization issues of MM5-U were 
identified and new parameterizations were proposed 
to produce the MM5-U (ASU). 

The essentials of MM5-U are the implementation 
of a DA-based roughness parameterization in the 
GSPBL scheme. The turbulence parameterizations 
were changed to account for roughness-induced 
turbulence and the heat and momentum diffusivities 
are assumed the same. A 3D soil model SM-U (3D) 
was introduced to take into account the heat fluxes, 
including anthropogenic heat flux, and surface 
temperature in canopy grid cells. In the MM5-U (ASU) 
version, a new turbulence lengthscale and momentum 
diffusivity were introduced, momentum and heat 
exchange coefficients for stable periods were 
modified, an evening transition parameterization was 
implemented for the cases of low synoptic flow and 
the roughness length was modified.  
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