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ABSTRACT
A coastal ocean data assimilation system was tested in sim-
ulation earlier for sensitivity to the different types of obser-
vational data. The system couples an advanced ensemble
Kalman filter algorithm to a detailed and sophisticated prim-
itive equations coastal ocean model. It is found that assim-
ilating only one type of data, say temperature, greatly slows
down the approach to asymptotic behavior of the analysis of
the other variables. Assimilating temperature alone does not
help to infer salinity and vice versa.

We examined correlations between simulated state vari-
ables on various locations and depths within the baseline
experiment. Distributions of correlation coefficients sur-
rounding an analysis point could be used to determine the
optimal localization domain for each particular relationship.
Given the large amount of dynamical and bathymetric vari-
ability within this model domain, correlation structures of
mixed shapes and sizes were observed. In many instances,
the parameterized localization actually used in the baseline
experiment was either too small or too large to capture the
actual correlations. Correlations between temperature and
salinity were found to be very small, consistent with the
results of the data impact experiments.

Index Terms— Kalman filtering, data impact, data assim-
ilation, coastal ocean model, localization

1. INTRODUCTION

A coastal ocean data assimilation system is being devel-
oped. The goal is to combine large and disparate datasets
with ocean numerical models, producing accurate analyses,
forecasts, and respective uncertainty estimates for any lit-
toral region. A modular interface combines the Estuarine
and Coastal Ocean Model (ECOM) and the Local Ensemble
Transform Kalman Filter (LETKF) into a highly scalable,
portable and efficient ocean data assimilation system. The
ECOM is a state-of-the-art, three-dimensional, hydrody-
namic ocean model developed as a derivative of the Princeton
Ocean Model [1]. The LETKF, a recent adaptation of en-
semble Kalman filtering techniques, works particularly well
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for very large non-linear dynamical systems in both sparse
and dense data regimes, and provides efficient algorithms for
error estimation and quality control [2]. In simulation experi-
ments for highly idealized data distributions in the New York
Harbor Observing and Prediction System (NYHOPS) the fil-
ter quickly converges, eliminating bias and greatly reducing
rms errors [3]. This behavior is robust to changes in ensemble
size, data coverage, and data error. The work of [3] was ex-
tended to subsets of observed variables [4]. The experiments
compared are: assimilate all variables (h, T, u, v, S), only
the free surface elevation h, only the temperature T , only the
salinity S, and the combination (h, T, S). Only the baseline
experiment assimilates currents (u, v). Observations in each
case are generated by adding random errors to the “truth” and
selecting each datum randomly.

Ensemble data assimilation provides a good way of deter-
mining the background error correlations. Since distant corre-
lations are expected to be relatively insignificant, the LETKF
limits the data region considered in a process called local-
ization. That is only observations from a local volume are
used [5]. Questions still remain concerning how the localiza-
tion size varies for different models and for different regions
within a model domain. How strong is the relationship be-
tween the errors of a single variable and all other variables at
different points and levels throughout a model domain? How
should the localization volume be tuned?

To answer these questions as well as to examine the T–S
correlations in an effort to explain the results of the data im-
pact experiments, we examined the actual correlations within
the forecast and analysis ensembles of the baseline experi-
ments of [3]. Patterns of sample correlations show large vari-
ability depending on the variables correlated and the position
within the model domain. Distributions of correlation coeffi-
cients (r) between a single forecasted or analyzed point vari-
able and the remaining field were used for visualization. Us-
ing larger ensembles, averaging in time, and eliminating the
start of the data assimilation experiment all help to control
spurious correlations in remote locations.



Fig. 1. The horizontal correlation between the point marked by ×, and the remaining model domain are illustrated for (a) T–T
and (c) u–u correlations. Regions which are colored red represent large positive correlations, where blue shades indicate strong
negative correlations and a white contour is plotted for |r| = 0.6. The key point is at location 45, 15, level 8. The vertical
correlation structure is shown along a cross section with i = 45 extending from the coast to the southern open boundary for (b)
T–T and (d) u–u correlations.

2. CORRELATIONS STRUCTURES

The NYHOPS domain is ideal for this particular type of study,
where the relationships between variables at an assortment of
locations in a diverse model domain are expected to vary sub-
stantially. The correlation structures differ greatly depending
on location and variable type. For visualization, a particular
(or key) variable at a particular (or key) location is correlated
with all variables at all grid points and levels in the model do-
main. Then horizontal or vertical slices through the domain
of correlations of a chosen variable with the key variable are
plotted. Typically, correlations greater than 0.6 are considered
significant. As examples, Fig. 1 shows T–T and u–u corre-
lations calculated for the last time step of the data assimila-
tion experiment. In this case, typical of locations in the open
ocean, correlations are strong at grid points nearest to the key
location and gradually taper off with distance. Length scales
for T–T correlations are much larger than for u–u correla-

tions. We find for correlation of a variable with itself length
scales are largest for h, then S, T , and (u, v) (cf. Fig. 1 to
Fig. 2). Correlations shown here are calculated from the anal-
ysis ensemble. Correlations were calculated for both ECOM
analyses and backgrounds (forecasts). Differences between
these are large at several isolated locations for the first analy-
sis time, but then quickly decay with time. By the eighth anal-
ysis (at the end of day 1) the two results have converged and
a strong agreement exists between analysis and background
correlations.

The ensemble Kalman filter uses a limited sample to es-
timate a large number of correlations. Some of these cor-
relations are expected to appear to be significant, but are in
fact spurious. Increasing the sample, reduces this problem.
For example, Fig. 2 plots S–S correlations for ensemble size
k = 16 and 64. (Except for this plot, all correlations dis-
played here are calculated from the k = 64 experiment.)

Another way to reduce spurious correlations is to average



Fig. 2. As in Fig. 1 but for S–S correlations for k = 16 (top) and k = 64 (bottom). The key point is again located at 45, 15,
level 8 (marked by the ×).

the correlations over time (i.e., over the different analyses,
once the data assimilation has reached asymptotic behavious).
Averaging in this way smooths out transient features in the
correlations, but can provide a much cleaner estimate of the
localization volume. First we note that spurious correlations
diminish with time as the LETKF analyses converge towards
the true system state. To illustrate this, Fig. 3 shows typical
analysis ensemble correlation at 12 and 96 hours since the
start of the experiment. As mentioned before, little change is
observed in the correlations by day 3; therefore, correlations
averaged over the last two days of the experiment can provide
reliable and accurate estimates of the localization volumes.

3. DATA TYPE IMPACT EXPERIMENTS

Figure 4 (reproduced from [4]) summarizes the results of the
impact experiments described above. Each panel in the fig-
ure plots the vertical profile of a single statistic (bias, error,
or spread) for a single variable (T or S) during the last half

of the assimilation experiments when asymptotic behavior is
obtained. A different symbol and color is used for each ex-
periment, as well as for the free running forecast (FRF). The
baseline experiment (denoted “all”) and the FRF are from [3].
Examination of the figure shows that S errors are large unless
S is observed and similarly for T , indicating that the cross
correlations between forecast errors of T and S are small, in
spite of the fact that advection is expected to be critical to the
evolution of both. The error statistics show given observations
of one variables, T or S, then observing additional variables
does not improve the analysis of the first variable, although
the ensemble spread, which may be considered an estimate of
the analysis error, is slightly smaller when more variables are
observed. We note that the T bias of the FRF is large, while
the S bias is small. These last findings reflect the biases of
the initial ensemble.

To better understand the results of Fig. 4 the spatial dis-
tribution of the errors was examined [4]. Not surprisingly in
the highly heterogeneous New York Harbor there are a vari-



Fig. 3. The evolution of a S–S sample correlation field over time. The key point is located at 38, 15, level 5 (marked by ×).
Correlations are shown at the end of 12 hours (left) and 96 hours (right) of assimilation.

ety of flow regimes and therefore the data assimilation system
responds to different treatments in a variety of ways. Here we
examine the cross-correlations between T and S in the data
assimilation of the k = 64 experiment that used all data.

For nearly all regions within the model domain, the anal-
ysis ensemble cross-correlations between T and S at an anal-
ysis point are quite minimal. For a key point in the vast open
water regions of the New York Bight, the cross-correlation
structure reaches barely significant values over a fairly large
scale area, but not centered at the key analysis grid point
(Fig. 5). Note that the cross section of Fig. 5 runs directly
through the region of maximum correlations, but not through
the key location. The same phenomenon is present within the
Long Island Sound and along coastal regions. However, this
type of correlation structure is probably spurious and should
not be considered significant.

4. CONCLUDING REMARKS

Ensemble data assimilation provides a promising path for
making use of remotely sensed ocean data such as sea surface
temperature, ocean color, turbidity, surface currents, free sur-
face elevation, and sea surface salinity. As a practical matter,
the ensemble approach provides the best way for observations
of one variable to affect the analysis of other correlated vari-
ables, either collocated or nearby, at the same level or through
the depth of the water column. With many sub-models avail-
able in the ECOM for biogeochemistry, sediment transport,
water quality, waves, and particle tracking, there are opportu-
nities to extend the assimilation to non-standard data such as
ocean color and turbidity, chemical tracers, wave energy, and
locations of drifting buoys and autonomous underwater vehi-
cles. These opportunities exist because the LETKF method
is completely general in the sense that when the observation
errors can be assumed to be Gaussian, any observation of a

physical parameter that has a known functional dependence
on the variables of the dynamical model, can potentially be
usefully assimilated.

Since spurious correlations tend to diminish after 1 to
2 days of simulation, results observed during days 3 and 4
of this experiment were taken to be a good estimate of true
relationships between variables. Given the large amount of
dynamical and bathymetric variability within this model do-
main, correlation structures of mixed shapes and sizes were
observed. Correlations differ greatly for different variables
and for different locations within the NYHOPS domain. In
general, correlation length scales substantially decrease from
h to S to T to (u, v). In the Hudson River, correlation struc-
tures tend to be relatively compact. In the case of u and v only
correlations between the analysis point and one or two nearby
grid points are significant for this part of the domain. The
dynamics of this region (i.e., shallow, fast moving water) is
most likely what causes these structures. On the other side of
the spectrum, correlations at points within small bay regions
of the model domain are rather large. Cross-correlations
between variables are much more complicated.

In many instances, the parameterized localization domain
was either too small or too large to capture the actual correla-
tions. In previous experiments the LETKF localization radius
is set to two horizontal grid lengths and one or two vertical
levels. This appears to be deficient for many cases. The accu-
racy and efficiency of this prediction system can potentially
be improved through larger localization volumes for analyses
of variables with large scale correlations (S, T , h, especially
in the open ocean), and smaller volumes for cases involving
compact correlation structures (u, v, especially in rivers).

Results from this study provide incentive to pursue
an automated solution to optimal localization within the
LETKF/ECOM system that tailors a unique localization
volume for each analysis region. Since we found a wide
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Fig. 4. The vertical profiles for temperature (top) and salinity (bottom) bias (right), analysis errors (middle), and ensemble
spread (left) in the data type impact experiments. The color codes are black for all, red for (h, T, S), aqua for H, magenta for
T , and blue for S. Units are ◦C and psu. The expected observational error for T of 0.5 ◦C is plotted on two of the panels. The
expected observational errors for S is 1 psu. Number in brackets in the legends are all equal to 72327 and give the average
number of values used to calculate the statistic plotted at each point in the curve.

Fig. 5. The ensemble cross-correlations between S and T at grid point 45, 15, level 8 (marked by ×) are averaged over days 3
and 4 of the simulation. In the horizontal correlation field (a), the line passing diagonally through the open ocean region shows
the location of the vertical cross section of the correlations (b).



variability in correlation structures, it follows that the correct
localization should also be variable. If successful, this method
can be applied to a variety of other applications, including
non-traditional variables where correlation distributions are
too complicated to resolve with simple a priori localization
volumes.
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