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1. Introduction 

In order to project a future climate, it is 
necessary to take into account of the impact of 
greenhouse gases which are being emitted more and 
more due to the human activities.  This study has 
focused on CO2, one of major greenhouse gases.  In 
addition to the anthropogenic emission, it is 
absorbed or released from the surface (land and 
ocean), depending on the biogeochemical conditions 
as well as its interaction and feedback with the 
climate.  Estimating surface CO2 fluxes is essential 
to project the global budget of CO2 because natural 
variability of surface CO2 fluxes can answer how 
much of CO2 will remain in the atmosphere. 

Thus, our purpose in this study is to estimate 
surface CO2 fluxes as well as atmospheric CO2 
concentration with an advanced data assimilation 
technique.   

2. SPEEDY-C and VEGAS with SLand 
First, we modified SPEEDY model (Molteni, 

2003) to simulate atmospheric CO2 concentration.  
We added one prognostic variable of atmospheric 
CO2 which has only advection and diffusion, in 
addition to the original prognostic variables of wind 
(U, V), temperature (T), humidity (q), and surface 
pressure (Ps).  Then, the model reads the forcing of 
surface CO2 fluxes and transports it by wind in the 
atmosphere.  The model does not change surface 
CO2 fluxes.  This model will be referred to as 
“SPEEDY-C”.   

For the time-varying fluxes of surface CO2, we 
coupled a terrestrial carbon model VEGAS (Zeng, 
2005), which is coupled to the physical land surface 
model SLand (Zeng et al., 2000a), to SPEEDY-C.  
With this coupled atmosphere-vegetation-soil model, 
we can calculate the CO2 fluxes over land with time, 
but the climatology of the SPEEDY-VEGAS-SLand 
is significantly different from SPEEDY-C.  1 

3. Three types of data assimilation: LETKF 
Using LETKF (Hunt et al., 2007), we have tried 

three types of data assimilation:  One is an 
uncoupled (univariate) data assimilation in which 
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atmospheric CO2 concentration and surface CO2 flux 
are updated by CO2 observations and not affected by 
other atmospheric variables.  Another is an one-way 
multivariate data assimilation in which the 
atmospheric CO2 concentration and surface CO2 flux 
are updated by these two variables as well as the 
wind fields, while the wind field, in addition to other 
atmospheric variables such as specific humidity and 
temperature, is not affected by these two carbon-
related variables. The other is a multivariate data 
assimilation so that all the dynamical variables are 
included in one vector. 

Here, the dynamic variables of analysis are (U, 
V, T, q, Ps, CO2, CF).  We do not have any 
observation of CO2 fluxes (CF).  Thus, CF can be 
updated by only background error covariance. 

4. Experimental design: OSSEs 
   4.1. Perfect model simulation 

We used the same model, SPEEDY-C, for both 
of nature and forecast, so model error could be 
ignored.  Furthermore, we included only fossil fuel 
emission as the carbon fluxes forcing which is 
constant with time and 6 PgC/yr (Andres et al., 
1996).  We tested three types of analysis introduced 
above.   

The observations of the atmospheric variables 
are located at the rawinsonde distribution of which 
coverage is about 9% in horizontal, while those of 
atmospheric CO2 are uniformly distributed at every 
other grid so that the coverage is about 25%.  The 
observation error for each variable is as follow; 1m/s 
for U and V, 1K for T, 0.1g/kg for q, 1hPa for Ps, 
1ppmv for atmospheric CO2. 

Analysis has been done every 6 hour; we have 
been used 20 ensemble members, and 8% of 
multiplicative inflation.  All the results are the 2-
month analysis.  The initial condition of CF are 
generated by randomly choosing 20 CF from the 
nature run and adding small random perturbation so 
it does not use any a priori information at all. 

   4.2. Imperfect model simulation 
SPEEDY-VEGAS-SLand was used for nature 

run.  This model has a climatology rather different 
than the SPEEDY-C which we use as the forecast 
model so that we need to consider model error, and 
only the one-way multivariate data assimilation was 



examined for imperfect model simulation.  We have 
the time-varying CF over land from the coupled 
model and the monthly prescribed CF over ocean 
given by Takahashi et al. (2002).   

 
Figure 1.  RMS error of analysis from three types of data 
assimilation: uncoupled(green),multivariate(blue), and one-
way multivariate(red) data assimilation for (a) U, (b) V, (c) T, 
(d) q, (e) atmospheric CO2 on the lowest layer of model, and 
(f) surface CO2 fluxes 

 
Figure 2. True state of surface CO2 fluxes after two months of 
analysis, and the resultant analysis of it from three types of 
analysis. 

10% of multiplicative inflation has been used 
except for the different inflation experiments 
(section 6.2).  Rest of experimental settings is same 
as that of perfect model simulation.  

5. Perfect model simulation  

Both multivariate systems performed well in 
terms of RMS error (Fig. 1 and 2). The one-way 
multivariate assimilation resulted in the optimal 
performance for the CO2 variables because it 
minimizes the sampling in the feedback from carbon 
variables to the atmospheric variables.  By contrast, 
the univariate assimilation of carbon had larger 
errors and diverged.  Using one-way multivariate 
data assimilation technique, we also tested the 
experiment which has the observations of CO2 
concentration only in the lowest layer and got the 
comparably good results (not shown).  Moreover, 
experiment with daily observations of CO2 still 
estimated CF reasonably well (not shown). 

 
Figure 3. RMS error of analysis from imperfect model 
simulations: no bias correction (green), bias correction(red), 
and bias correction + different inflation(blue) for (a) U, (b) V, 
(c) T, (d) q, (e) atmospheric CO2 on the lowest layer of model, 
and (f) surface CO2 fluxes 

6. Imperfect model simulation 



Since we confirmed that one-way multivariate 
data assimilation has optimal performance through 
the perfect model simulation, we applied only this 
technique for imperfect model case.  From the figure 
of RMS error (Fig.3: green), we found that the 
forecast was significantly different from the nature 
so that the ensemble system does not represent the 
true state well. 

 
Figure 4. (a) True state of surface CO2 fluxes after two months 
of analysis, and the resultant analysis of it from the 
experiment (b) with bias correction, (c) with bias correction + 
different inflation factors for CO2 variables. 

6.1. Model bias correction 
We tried to estimate and fix the model bias we 

saw the previous experiment.  Similar to Danforth et 
al. in 2007, we averaged the distance between the 
nature and the six-hour forecast which started from 
the true state for two months.  Then, we subtracted 
this estimated model bias from the ensemble forecast 
before the analysis step.   

With this simple method, we could get 
remarkable improvement in the analysis.  Especially 
for the atmospheric variables and atmospheric CO2 
which have the observations, the current ensemble 
system worked very well.  The analysis of CF, 
however, got diverged with time (Fig.3: red, Fig. 
4(b) and 5(b)). 

6.2. Inflation for atmospheric CO2 and surface 
CO2 fluxes 
We found that the ensemble spread of CO2 is not 

enough to estimate CF well so that we made a test 
run which has different inflation factor for CO2 and 
CF.  With large inflation (=1.50) for CO2 and small 
inflation (=0.05) for CF, we obtained an excellent 
performance of CF (Fig.3: blue).  Analysis of CO2 
got a little worse, but not bad if we consider 1ppmv 
of the observation error (Fig. 3, 4, and 5).  

 
Figure 5. (a) True state of atmospheric CO2 on the lowest 
layer after two months of analysis, and the resultant analysis 
of it from the experiment (b) with bias correction, (c) with bias 
correction + different inflation factors for CO2 variables. 

7. Summary and discussion 
This study is a component of a project for CO2 

data assimilation with LETKF/CAM3.5 system (PIs: 
Eugenia Kalnay/Inez Fung). The CAM3.5 is very 
complex and expensive whereas the SPEEDY and 
the VEGAS are simple but realistic, having only an 
intermediate complexity.  The coupled system of 
SPEEDY-VEGAS has produced reasonable results 
and LETKF has been also implemented successfully.   

Through the perfect model simulation with three 
types of data assimilation, we can conclude that the 
multivariate CO2 data assimilation experiments were 
performed for the first time, and the results indicate 



that multivariate EnKF assimilation is much more 
effective in estimating both atmospheric CO2 and 
surface CO2 fluxes, even in the absence of 
observations or prior estimations of surface fluxes.  

Under the imperfect model assumption, we 
could estimated and remove the model bias and then 
get encouraging results and further improve the 
results with different inflation factor for atmospheric 
CO2 and surface CO2 fluxes.  In order to find the 
optimal values for the inflation, we plan to calculate 
adaptive inflation and observation error (Li, 2008) 
for atmospheric variables as well as atmospheric 
CO2. 
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