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1. INTRODUCTION 
 

The unintentional or intentional release of a 
harmful contaminant is a serious threat to civilians and 
to our nation’s military forces. Responding quickly and 
with the best information possible is critical to mitigating 
the threat and minimizing the impact on population and 
property. Characterizing the source accurately is vital to 
driving atmospheric transport and dispersion (AT&D) 
models and thus predicting the future state of the puff. 
Unfortunately, the meteorological and chemical data is 
likely to be spatially and temporally sparse so efficient 
use of the data is critical to determining an accurate 
solution. 

Forecasts are extremely sensitive to initial 
conditions and even slight differences in initial 
conditions can lead to drastically different realizations 
such as those depicted by the two contoured 
concentration fields superimposed on the array of 
sensors in Fig. 1. Inaccurate initial conditions can lead 
to poor forecast quality and thus greatly hamper 
mitigation and evacuation procedures. But suppose we 
have sensors in the field, as illustrated by the black 
circles in Fig. 1. Can we use the time dependent 
concentration information made available by these 
sensors to determine the characteristics of the source? 
We demonstrate that a genetic algorithm back-
calculation model coupled with SCIPUFF is successful  

 

 
Figure 1: The source term estimation problem. Colored 

contoured concentration fields suggest different 
realizations resulting from varied initial conditions. A 

sensor network, indicated by black circles, reports 
concentration amounts. 
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at identifying the basic source term information. Section 
2 describes the GA back-calculation model and 
SCIPUFF. The observation data is also described in that 
section. The results are described in section 3. Section 
4 summarizes the work and discusses future prospects. 
 
2. EXPERIMENTAL DESIGN  
 

Our approach to the source term estimation 
problem uses a genetic algorithm variational technique, 
GA-Var. GA-Var avoids the backward integration step of 
traditional four-dimensional variational techniques by 
directly optimizing the unknown variables using forward 
integration and solution evolution. In this study we 
couple the GA with the Second-order Closure Integrated 
Puff (SCIPUFF) model to back-calculate several 
parameters describing a contaminant release. 
Specifically, a set of trial solutions, each representing a 
possible source term, is randomly initialized. The GA 
evolves the population of potential solutions through 
mating and mutation operators and for each new trial 
solution a new forecast is created via SCIPUFF. This 
resulting forecast concentration field is compared to the 
observed concentration field via a cost function. The 
observed concentration data is obtained from NCAR’s 
Eulerian/semi-Lagrangian (EULAG) numerical model. 

 
 

2.1 Observation Data 
 

The observation data for this study is 
generated from NCAR’s Eulerian/semi-Lagrangian 
(EULAG) numerical model and is meant to simulate the 
FFT07 field experiment. The EULAG model uses a 
Large Eddy Simulation (LES) approach to solve the 
partial differential equation governing the flow. It is 
coupled with a global climatology analysis tool (GCAT).  

The source (indicated by the yellow burst in 
Fig. 2) is located at 40.0971N, -112.9755E. The release 
is an instantaneous release (a single puff) in a 
convective boundary layer with wind generally out of the 
North Northwest. A network of 100 sensors (indicated 
by the black circles in Fig. 2) is located just south and 
east of the source. The sensors are approximately 100 
m apart. We use the concentration value from a height 
of 10 m above the ground. The observation data are 
collected every 10 seconds for 300 seconds.  

 
2.2 SCIPUFF 

 
SCIPUFF is a sophisticated Gaussian puff 

based model that splits and merges the puffs according 
to prescribed conditions (Sykes et al. 2004). The inputs 
for SCIPUFF were derived from the CFD wind field data. 
The most representative wind direction and speed was 
obtained from the observation data and is implemented 
as a single fixed wind field with a uniform wind direction.   
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The release was set up in SCIPUFF as a 
daytime release beginning at noon local time. The 
boundary layer is modeled as simple diurnal and large 
scale variability is set to none. The release is modeled 
as continuous with 0.74 kg s-1 released for 10 s. A 
generic gas, C7F14, with the same density as air is 
chosen to mimic the material used in the LES release. 
The material is released from the surface and the 100 
sensors retrieve concentration in the field from a height 
of 10 m (indicated in Fig. 2). The release is run for 300 s 
with data output every 10 seconds. The maximum time 
step for internal SCIPUFF calculations is set to 10 
seconds. Note that domain for the GA is much smaller 
than the domain for SCIPUFF so that even if the source 
is placed on the extreme most point in the GA domain, it 
will still have ample room to grow and disperse in the 5 
minute simulation before the puff moves off the 
SCIPUFF domain. The GA and SCIPUFF domains are 
described in Table 1.  

 

 
Figure 2: The experimental setup with the release indicated 

by the yellow burst and the sensor network indicated by 
the black circles. The trial solution can be located 

anywhere within the GA domain and the puff can advect 
and disperse anywhere within the larger SCIPUFF domain. 
 
 
Table 1: GA & SCIPUFF Domains 
  SW Corner NE Corner 
SCIPUFF Latitude 40.0623°N 40.1283°N 
 Longitude -113.0070°E -112.9470°E 
GA Latitude 40.0871°N 40.1072°N 
 Longitude -112.9901°E -112.9639°E 

 
2.3 Genetic Algorithm 

 
The genetic algorithm is an artificial intelligence 

optimization technique inspired by the biological 
processes of genetic recombination and evolution. It 
begins with a population of trial solutions or 
chromosomes and evolves them closer to the true 
solution through mating and mutation operators as 

illustrated in Figure 3. The GA used in this study is 
described in more detail in Haupt and Haupt (2004).  

The GA is initialized with a random population 
of trial solutions. In this example, the trial solutions are a 
vector of source locations. These potential source 
locations are then given to SCIPUFF and a set of 
resulting concentrations fields are calculated.  

The fitness of each member of the population 
is determined by comparing the forecast field to the 
observed concentration field by evaluating the cost 
function. The cost function is simply the difference 
between the observations and the forecast. 

 

         (1) 

 
where Cr is the concentration as predicted by SCIPUFF, 
Rr is the receptor data value at receptor r, TR is the total 
number of receptors (in this case 100), a and ε are 
constants, and the cost function is summed over all 
thirty time steps. To avoid taking the logarithm of zero, ε 
is added to Cr and Rr quantities. The value of ε is 10 
orders of magnitude smaller than the largest 
concentrations of Cr and Rr. If ε approaches one, then it 
will dwarf the concentration values, Cr and Rr , thus 
rendering the cost function meaningless. Cost function 
values closer to zero are desirable.  

 
Figure 3: Schematic of the GA process. 

  
After the cost function is evaluated, the 

population is then resorted such that solutions with 
lower cost function values are more likely to participate 
in natural selection. Next, a portion of the population is 
modified through the mating operation where two parent 
chromosomes are recombined to produce two new 
children chromosomes. Then a portion of the population 
is modified through the mutation operation where a 
random mutation is introduced into a percentage of the 
solutions. This cycle continues and the population is 
evolved until convergence is reached.  
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3. RESULTS 
 
Initially, a sensitivity study was conducted to 

determine the optimal parameters for the GA, which 
were found to be a population size of 64, a mutation rate 
of 0.05 and 10 iterations. Results were not sensitive to 
an increase in the number of iterations, an increase in 
population size, or varying mutation rates, suggesting 
that the solution converges under this configuration.  

The back-calculation algorithm is run for 
several different wind speeds and directions to illustrate 
the high sensitivity to those meteorological parameters. 
Fig. 4 illustrates the differences in retrieval with only a   
1 m s-1 difference in wind speed. Note that for plotting 
purposes a wind direction of 10° is labeled 370° and so 
on. For a wind direction of 350°, the error in source 
location is reduced from 174 m to 45 m by a change in 
wind speed of only 1 m s-1. This study illustrated the 
importance of knowing the wind data correctly.  

If the results are further decomposed into the x 
and y components as illustrated in Fig. 5, we see that 
the y source location, in this case the latitude, is more 
accurately retrieved by the GA. In particular notice the 
extreme sensitivity to the error in the x source location. 
In some instances, the reduction the MAE is reduced by 
nearly an order of magnitude. Notice that the best 
retrieval for the error in the y location is at 325° but for 
the x error the best retrieval occurs at 360°. Note that 
the best location magnitude error in Fig. 4 more closely 
agrees with 360°.  

 
4. SUMMARY & DISCUSSION 

 
With SCIPUFF as our forward dispersion 

model we are able to use the GA to back-calculate 
several source parameters including the location of the 
release in the x- and y-directions. Now we have the 
source information necessary to create a forecast. The 
CFD data provides a critical bridge to understanding the 
details of the flow when moving from an identical twin 
synthetic data experiment to a field experiment.  

As pointed out in Krysta et al. (2006) and Allen 
et al. (2007) back-calculating the most representative 
wind speed and direction is critical to the success of 
retrieval in the model. Future directions include 
extending the model to characterize more complicated 
release scenarios involving multiple releases and more 
complex meteorology. We also plan on expanding the 
model to retrieve meteorological variables such as wind 
direction and speed.  
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Figure 4: Mean absolute error (MAE) in source location as 
a function of wind direction and wind speed. 

 

 
 

Figure 5: Mean absolute error (MAE) in x and y source 
location as a function of wind direction and wind speed. 
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