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1. Introduction

a. Z-R Relations and their Problems

Remote measurement of the rainfall rate has been
an important product provided by the NEXRAD net-
work. Radars have large coverage area that is not
practical to achieve with a dense network of precipi-
tation sensors. Given how important the rainfall rate
estimation is to the hydrology of a region (e.g. —
flash flood warnings, rainfall totals), one must under-
stand the limitations of current methods of estimat-
ing rainfall rates, and then determine how it can be
improved.

In a Z-R relationship, the rainfall rate, R, is esti-
mated from the radar reflectivity, Z, using a simpli-
fied relationship of the form:

Z = aRb (1)

While (1) captures the overall pattern that is ob-
served (i.e. — when it rains harder, the radar reflec-
tivity increases), it utilizes a variety of simplifying as-
sumptions to reach this point. This relationship uses
the static parameters, a and b which are derived from
an assumed gamma drop size distribution (DSD) in
the scanning volume. These static parameters are
usually tuned to the climatology of the region in or-
der to improve the estimate.

As noted by Doviak and Zrnić (1993): “drop-size
distribution requires an indefinite number of parame-
ters to characterize it, and thus the radar-determined
value of Z alone can not provide a unique measure-
ment of R.” This is because different DSDs within a
range gate can make a significant difference in the
return power of the radar signal for the same rainfall
rate.

Equation (1) also assumes that the precipitation is
composed of spherical drops of liquid water, as well
as assuming that the vertical wind velocity is zero.
If the precipitation is ice or snow or mixed, then the
amount of power returned is significantly different.

∗ben.root@ou.edu

In addition to the above limitations, there is the
complicated issue of verification of the rainfall rate
estimate. Surface-based precipitation measuring
devices, like rain gauges and disdrometers, can
have significant errors in measurements due to pre-
cipitation types and precipitation rates. For exam-
ple, a tilt-bucket type rain gauge can be insensitive to
light and heavy rainfall. Another issue is that the rain-
fall rate is not uniform the large area that the sensor
represents, so the measured rainfall rate may not be
representative of the entire area. These issues with
instrumentation causes errors in rainfall rate mea-
surements on the ground.

The problem is then compounded with the as-
sumption that the rainfall measured at the ground is
exactly the same as the rainfall scanned by the radar
above. During the fall of a precipitation drop, it can
change type, grow and shrink, and even be advected
away from the precipitation sensor. This means that
the instrument on the ground measured different pre-
cipitation than what fell through the range gate of
the radar above the sensor. From an instrumenta-
tion perspective, there is not much that can be done
about these verification issues.

b. Overview of Rainfall Rate Estimation

In order to improve the rainfall rate estimation, an
examination of its basic theory is required. The rain-
fall rate in a unit volume is known to be a function
of the drop size distribution (DSD), N(D), and the
fall speed of the precipitation, wp(D), relative to the
ground (i.e. — terminal fall speed minus the vertical
component of the wind):

R =
π

6

∫

∞

0

N(D)D3wp(D) dD (2)

The integral is over the domain of drop diameter,
D. Any advances in rainfall rate estimation must
come from a better representation of the DSD and
the precipitation fall speed. For a Z-R relation, the
DSD has an assumed shape, and is adjusted by pa-
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rameters. These parameters allow the Z-R relation
to be relevant to a particular set of weather condi-
tions, provided that the actual DSD fits the assumed
DSD well.

With equation (2), the adjustment of values for a

and b is used to produce a best fit for regional and
seasonal precipitation patterns. This leads to the ex-
istence of a large number of relationships. Rather
than identifying which Z-R relationship to apply in
a location, it may be more practical to use a single
function of multiple inputs to better estimate the rain-
fall rate anywhere.

The DSD for the precipitation is highly dependent
upon the conditions exhibited by the precipitating en-
vironment. The concentration of condensation cloud
nuclei, the amount of water vapor available, and
temperature all effect the DSD. In addition, the fall
speed, wp(D), depends upon not only the size of the
precipitation, but also the shape and material of the
precipitation. These conditions are always chang-
ing over time, even within the lifetime of a precipi-
tating event. Therefore, the improved representation
of the DSD and the precipitation fall speed must be
available at near the same temporal resolution as the
rainfall rate estimations would be produced.

c. Precipitation Representation

Unfortunately, the current single-pol WSR-88D
radars can not determine information about the DSD
and, to a limited degree, the precipitation fall speed
from the radar signal itself. Likewise, in-situ real-
time observations are not feasible. Therefore, this
information is not available for direct calculation of
the rainfall rate. The DSD and the precipitation fall
speed must be represented as functions of other ob-
servables.

Dual-Polarization weather radars can provide
some of the needed observables. Some of the radar
parameters produced by a dual-pol scan of a range
gate are directly effected by the size and shape of
the precipitation. In addition, other parameters are
also effected by the type of precipitation in the range
gate. Therefore, these parameters could be utilized
to determine the DSD and the fall speed of the pre-
cipitation. Another source of possible observables is
in-situ measurements of the atmospheric conditions.
Observables such as temperature, wind, pressure
and water vapor are all known to have an important
impact upon DSD and precipitation fall speed (either
directly or indirectly).

It is known that these observables are tightly re-
lated to DSD and precipitation fall speeds. However,
the relationships are either complicated and/or un-
known. Deriving any sort of theoretical model would
likely prove to be impossible without major simplifi-

cations. In addition, the implementation of such a
theoretical model may prove to be computationally
prohibitive, due to the need to integrate over drop
sizes for each range gate.

d. Why Artificial Intelligence?

Developing a model to relate the multitude of prac-
tical observables to a rainfall rate using theoreti-
cal physics is too difficult and would not be prac-
tical to implement. So the approach for develop-
ing this model changes from physics to empirical
model fitting. If one can not derive a function from
the physics, then one should try to deduce it from
the observations. The typical empirical model fitting
technique, linear regression, which, like the Z-R re-
lationship, is of insufficient complexity. Therefore, a
non-linear regression needs to be performed.

This project utilizes the techniques of artificial in-
telligence to produce a model that adapts itself to ob-
served data and can be used operationally for simi-
lar situations. While the model itself may or may not
be useful for gaining a theoretical understanding of
the physical relationships involved, it is ideal for an
implementation of a practical solution to a complex
relationship.

2. Methods

a. WEKA

The Waikato Environment for Knowledge Analy-
sis (WEKA) Witten and Frank (2005) is a soft-
ware ‘workbench’ for experimenting with and
learning many different machine learning tech-
niques. It is actively developed by the profes-
sors and students at the Waikato University in
New Zealand. The software is written in Java
and is open-source. The homepage is located
at http://www.cs.waikato.ac.nz/ml/weka/.
WEKA is capable of performing a number of different
data analysis tasks, which makes it ideal for com-
paring and contrasting multiple analysis techniques.
When one is satisfied with the training of a particu-
lar AI model, WEKA can then describe the internal
model parameters fully so that one can recreate that
model in some other AI framework for operational
use. For this project, WEKA 3.5.7 was used for train-
ing and analysis of the neural network.

b. Multilayer Perceptron

The AI technique chosen for this project is the ‘Mul-
tilayer Perceptron’ (MLP), which is a type of ‘Artifi-
cial Neural Network’ (ANN). The neural network is
comprised of input nodes, hidden nodes, and out-
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put nodes. The n-th node of the m-th layer can be
functionally described in equation (3) as:

For f(y, w,m) =

Pm
∑

i=1

yimwim

ynm =







xn for m = 1
(

1 + e−(T+f(y,w,m−1))
)

−1
for 2 ≤ m < M

T + f(y, w,M − 1) for m = M

(3)
For an input layer node, m = 1, the activation func-

tion is effectively a zero-intercept linear function. For
a hidden layer node, 2 ≤ m < M , the activation
function takes the form of a logistic function. For an
output layer node, m = M , the activation function is
a weighted sum of the P nodes of the previous layer
plus a threshold.

c. Training

Training is the process by which the AI model ‘learns’
the desired behavior. This project utilizes a super-
vised training approach for the MLP with back prop-
agation to tune the weights of the nodes. For this
work, the cost function for the model to minimize is
the mean squared error between the observed rain-
fall rate and the model-estimated rainfall rate. Also,
the neural network is initialized with random values
for its weights and thresholds.

d. MLP Input/Output

To begin the design of an artificial neural network,
one must first consider the inputs and outputs of the
model. For this project, there was one output: the es-
timated rainfall rate. The choices for inputs is more
difficult. It is known from theory that rainfall rate mea-
sured by radar is a function of the reflectivity, drop
size distribution (DSD), and material properties of
the target (e.g. — rain, snow, ice, mix). In addi-
tion, the radar is scanning above the surface, so dis-
crepencies can occur between surface observations
and radar measurements because of differences in
rainfall rates vertically. Another factor effecting the
choice of input variables is availability. Because the
neural network needs large amounts of data to learn
from, the source of any input must be plentiful.

For input data, the obvious choice of reflectivity is
made, given that it has the primary relationship with
rainfall rates. As for dropsize distributions, it is de-
cided that surface measurements would serve as a
sufficient proxy for any atmospheric conditions aloft.
Surface temperature, relative humidity, and air pres-
sure were chosen for input into the model. Finally,
given that there may be seasonal variations in the
kinds of precipitating events that occur in an area

(therefore, seasonal variations in DSD and precipita-
tion types), the day of the year is included as input
to the model. The day of the year is represented
the fraction of the year completed at the time of the
measurement. Therefore, the neural network struc-
ture has five input nodes and one output node.

It should be acknowledged that the use of polari-
metric data would likely produce better results, given
that many of the polarimetric parameters are more
suited for identifying the types of precipitation being
scanned. This will be attempted in a later study. The
main purpose of this study is to determine the use-
fulness of surface observations for improving rainfall
rate estimation.

e. Training Dataset

The training dataset was compiled using a number of
sources. First, major rain events in central Oklahoma
were identified using the Index of Severe Thunder-
storm Events from the Storm Prediction Center and
Storm Events Database from the National Climatic
Data Center (NCDC). With the major precipitation
events identified, Level-II radar data from KTLX was
obtained for those times using the NCDC HDSS
Access System (HAS). The raw Level-II files from
HAS was processed utilizing the Java NEXRAD Data
Exporter from NCDC under the Batch Processing
mode. The reflectivity data for the lowest elevation
angle was then interpolated onto a lat/lon grid and
underwent a light smoothing.

Next, for each KTLX radar file, the ‘Mesonet Data
File’ (MDF) for the Mesonet observation time clos-
est to the observation time of the radar was down-
loaded and processed. For each Mesonet station in
the file within 160 km of the KTLX radar station, the
surface temperature, relative humidity, pressure and
rainfall since 0000Z was obtained. Then, the MDFs
for five minutes before and after the observation
time was processed for the station’s rainfall amounts
since 0000Z. Using that information, a rainfall rate
estimate was calculated by determining the rainfall
measured during the span of the three Mesonet ob-
servations and then dividing it by the time span of
the observations. At the same time, the reflectivity
value at the location of the station was obtained from
the radar file. Finally, this dataset was processed to
randomly remove a large percentage of low-rainfall
events so as to balance the training dataset. Af-
ter balancing the dataset, there were approximately
1500 observations used to train the AI.
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3. Results

For the hidden portion of the AI, the choice of struc-
ture comes about after much trial-and-error. The
main problem is making sure that the AI model gives
zero precipitation rates for low reflectivity and to ex-
ponentially increase the rainfall rate for higher reflec-
tivities. When trying several different MLP structures,
the resulting model was not grounded at zero rain-
fall rate (often low reflectivities yielded slightly neg-
ative or slightly positive rainfall rates), and often the
model would not give high enough rainfall rates for
high reflectivities. Eventually, it was found that the
model structure needed that can still produce the fa-
miliar exponential relationship when viewed in the Z-
R plane would be a (6,3) hidden structure. In other
words, the first hidden layer has six nodes while
the second hidden layer has three nodes. The final
structure of the MLP is diagrammed in figure 1.

Figure 1: Diagram depicting the implemented Multi-
layer Perceptron.

After several attempts at training the MLP, it ap-
pears that the best training results occur with the
‘learning rate’ set to 0.02 and the ‘momentum’ value
set to 0.41. As for the number of training iterations to
use, it was found that the more iterations the training
process spends, the better the upper end of the rain-
fall rate model becomes. For example, when trained
for only 5000 epochs, the maximum rainfall rate pre-
dicted was only around 85 mm/hr. When trained for
15000 epochs, the maximum rainfall rate predicted
was increased to about 105 mm/hr.

The final MLP model took 60000 epochs for train-
ing. Its rainfall rate as a function of reflectivity is
shown in figure 2(b). For comparison, the rainfall
rates as calculated by the NWS Z-R relationship,
Z = 300R1.4, is shown in figure 2(a). The red dots
in these graphs are the observed rainfall rate as a
function of observed radar reflectivity. The blue dots
are the models’ rainfall rate estimate as a function of
the observed radar refectivity. The average errors of

these two models are shown in table 1. Figures 3(a)
and (b) shows how the two models compare with the
observed rainfall rate. The line in both graphs is the
model’s goal. Note that for figure 3(a), the y-axis had
to be restricted to 120 mm/hr, as there were some
rainfall rates estimated by the NWS Z-R model that
were around 500 mm/hr, and would have skewed the
graph.

NWS MLP
Mean Absolute Error 20.01 10.58

Root Mean Squared Error 40.24 14.32

Table 1: Mean absolute errors and root mean
squared errors in mm/hr between the models (NWS
and MLP) and the observation used for training.

4. Conclusions

When analyzing the observed rainfall rates versus
radar reflectivity, it becomes very apparent that a
function of a single variable cannot fully model the
necessary relationship. The observed rainfall rates
can cause a wide variety of radar reflectivity. Cal-
ibration of a Z-R relationship can only improve the
rainfall rate estimation to a point.

The attempt to use surface-based information to-
gether with radar reflectivity in a neural network re-
sulted in a noticeable improvement in the rainfall rate
estimation over the NWS Z-R relationship. For the
dataset used for training, which has a majority of
rainfall rate cases below 30 mm/hr, the neural net-
work improved the mean absolute error of rainfall
rate estimate by about 10 mm/hr. The root mean
squared error was improved by almost 25 mm/hr.

The NWS Z-R relationship, when compared to
the observations, appears to fit the data very well.
However, the model particularly has difficulties for
high reflectivity situations. It should be noted that
a significant portion of the errors for the NWS model
comes from the extreme over-estimation of rainfall
rates from reflectivities greater than 52 dBZ. Ignoring
reflectivities that are greater than 52 dBZ, the mean
absolute error comes down to 12.7 mm/hr and the
root mean squared error comes down to 18.6 mm/hr.

It is also possible that there is an error in the mea-
surement of the rainfall rates by the Mesonet stations
in very heavy rainfall rate situations. It is known that
the instruments will underestimate the rainfall totals
in such situations. However, regardless of how well
the Mesonet stations handle extreme rainfall situa-
tions, the very nature of the Z-R relationship (an ex-
ponential function), means that there will be signif-
icant errors if the DSD is not the same as the one
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assumed for the model when dealing with high rain-
fall rate situations. One will either severely underes-
timate or overestimate the rainfall rate.

Given that the training data could only use ground-
based information to supplement the reflectivity
data, the amount of improvement that the neural net-
work produced in its rainfall rate estimates is sig-
nificant. In addition, because the neural network is
not constrained to a strict exponential relationship, it
can handle the spread of rainfall rates that can occur
at the higher reflectivities in a better manner. This
means that while there may be errors in rainfall esti-
mates for high rainfall situations, it will not be grossly
overdone.

Currently, the neural network does have trouble
with ‘anchoring’ the model down to zero-rainfall rate
for low reflectivities. This might be an issue with the
training dataset as an earlier training managed to
anchor the model properly when much more zero-
rainfall cases were used. However, that training set
forced an overwhelming bias to low reflectivities and
the model could not handle high-reflectivities cor-
rectly.

Therefore, given that the MLP showed improve-
ment over the well-calibrated Z-R relation, it can be
concluded that an artificial neural network can be
sufficiently trained to handle rainfall rate estimations.
In particular, it is the utilization of the surface obser-
vations within the MLP that improved the rainfall rate
estimation.

5. Future Work

More work needs to be done to properly ‘balance’
the cases in the training dataset. While a significant
number of zero-rainfall cases are needed to help ‘an-
chor’ the neural network to zero-rainfall, such actions
tend to hurt the skill of the AI model. Also, more
cases where the reflectivity is greater than 40 dBZ
is needed to help improve the ability of the neural
network to understand high-rainfall rate situations.
The ultimate test would probably be the utilization of
polarimetric data as it can provide better measure-
ments of the DSD and precipitation type. Lastly, with
a larger and improved dataset, a proper analysis will
be done on how much the AI model is over-fitting the
training data.
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and Weather Observations. Dover Publications,
Inc., Mineola, New York, 2nd edition.

Witten, I. H. and E. Frank, 2005: Data Mining: Prac-
tical machine learning tools and techniques. Mor-
gan Kaufmann, San Francisco, 2nd edition.

5



Figure 2: Comparison between the NWS Z-R model
and the MLP model. These figures use reflectivity
[dBZ] for the x-axis and rainfall rate [mm/hr] for the
y-axis. All mesonet rainfall rate observations are de-
picted in red and are identical in both figures. Figure
(a) is for the NWS Z-R model. Figure (b) is for the
MLP Neural Network model.
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Figure 3: Correlation plots of the models’ rainfall rate
estimate and the observed rainfall rate. Figure (a) on
the left is for the NWS model, while figure (b) on the
right is for the MLP model.
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