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INTRODUCTION 
The requirement to satisfy a Zdr antenna 

induced bias of less than 0.1 to 0.2 dB presents 
significant design challenges to the phased array 
radar system design. Three of the key parameters 
that affect the Zdr bias imbalances in the 
transmitter and receiver channels and 
depolarization introduced by the antenna radiating 
structure.  Zrnic(1) has shown that -30 dB cross-
polarization of an antenna alone at an arbitrary 
phase can introduce a bias error of ±.2 dB.   

In most current applications with reflector 
antennas, errors in the antenna transmit and 
receive, channels are calibrated to minimize the 
Zdr measurement error and the antenna is 
designed with a very low cross-polarization. This 
problem is somewhat more challenging in the 
phased array due variations in the antenna 
characteristics over the scan coverage region.  
Urkowitz (1) has shown that errors in polarization 
characteristics of phased array antennas with 
ideally orthogonal radiating elements introduced in 
transmission may be corrected in the receive 
channels of the antenna where compensation is 
more practical.   For phased arrays with non-
orthogonal radiating elements, Zhang et. al. (2) has 
shown that a matrix can be used to correct the 
measured scattering matrix of the reflected 
weather data for sufficiently narrow beam 
antennas.  This correction matrix approach is 
recast, herein, to facilitate the analysis of all of the 
array measurement parameters requirements 

necessary to achieve improved Zdr accuracy.  
These include signal amplitude, phase imbalances 
in the transmitted, and receive signal, radiating 
element cross-polarization characteristics and 
antenna array tilt.  

The correction matrix will be obtained by 
measurement of the polarization characteristics of 
the phased array over all scan angles.  A 
description of the algorithm is included in section 1 
of this report.  Section 2 of this report includes a 
brief discussion   of the required measurement 
accuracies to satisfy challenging Zdr bias 
requirements.  

1.  POLARIZATION COMPENSATION 
Figure 1 is a schematic showing salient 

features of the phased array.  The horizontal and 
vertically polarized channels at each radiating 
element include a separate phase shifter, high 
power amplifier (HPA) and duplexed low noise 
amplifier (LNA) and radiating element. An ideal 
directional coupler shown between each circulator 
and antenna element provides a measurement of 
the incident (alternate sampling approaches can 
be used) transmitted power, which will be used to 
measure the coupled signal amplitude and phase 
for calibration of the array.   The antenna radiates 
vertical and horizontal polarization simultaneously 
producing a slant polarization and receives both 
polarizations in two separate channels.  The 
modules for each polarization are separately 
combined in the receive mode to provide a low 
sidelobe antenna patterns. 



2 
 

 
Figure 1. Block diagram of phased array 

In accordance with the coordinate system in 
Figure 2, when only the h-port is excited, the unit 
vector of the radiated field is  

h h i h i
ˆˆ ˆe =i h + ε v  (1) 

and when only the v-port is excited, the unit vector 
of the radiated field is 

v v i v i
ˆˆ ˆe = ε h + i v  (2) 

hi  and vi  are the magnitude of the co-polar 
components and εh and εv are cross-polarized 
components of the horizontal and vertical ports, 
respectively.  The radiated field is subscripted i to 
denote signal incident on scattering objects.  

Consider and array with (2M+1)(2N+1) 
elements located in a parallelogram lattice as 
shown in Figure 2.  The element locations are 
represented by the vector  

mn 1 2r =md +nd where m M and n N≤ ≤  

where 1d and 2d are shown in Figure 3. 
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ĥ
Array in yz 
plane

r

 
Figure 2. Coordinate System 
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Figure 3. Radiating Element Lattice 

Adapting notation similar to Bringi and 
Chandrasekhar(3) extended to the he phased array 
antenna, the radiated  field at a specific point in 
space , ,r θ φ  is: 

i j ht0
ht h h h i h i

Z ˆ ˆE M g e (i h + v )
2

φ
= ε

π
 

-jk roe
r

 

when  Mv  = 0 (3) 

i j vt0
vt v v v i v i

Z ˆ ˆE M g e ( h +i v )
2

φ= ε
π

 

-jk roe
r

   when  Mh  = 0 (4) 

where 

T T0 mn T T0 mn

M,N M,N
-j(k -k )×r -j(k -k )×r

h hmn v vmn
m,n m,n

2 2M,N M,N

h hmn v vmn
m,n m,n

h h v v

T x

M = M e and M = M e

and P = M , and P = M are

the h and v polarized transmit powers, respectively.
g , and g , are the h and v element gain and phase

2π ˆk = (ui
λ

φ φ

∑ ∑

∑ ∑

y T0 0 x 0 y
0

0 0 0 0 0 0

0 0

2πˆ ˆ ˆ+vi ), k = (u i +v i )
λ

u=sinθcos , v=sinθsin
u =sinθ cos , v =sinθ sin
θ , is the array pointing angle

φ φ
φ φ

φ
 

Zo is the free space impedance = 377ohms 

λ=free space wavelength at frequency f 

r is distance from the center of array to the field 
point. 

hM and vM are the transmit horizontal and 
vertical polarized array factors and the coefficients 
in these respective summations determine the 
antenna sidelobes and beamwidth. 

Hence 

( )ht vtj ji 0
ht i h h v v v v i

Zˆ ˆE h = M g e i +M g e ε h
2π

φ φ   

 (5) 

 

( )vtji 0
vt i h h h v v v i

Zˆ ˆE v = M g e +M g e i v
2π

htjφ φε  

 (6) 
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In matrix form, 

o
j ht j vti jk r

h h v v hht o
i j ht j vt

vvt vh h v

g e i g e ME Z e
M2 rE g e g e i

φ φ
−

φ φ

⎛ ⎞ε⎛ ⎞ ⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟π ε ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (7) 

or 

o
j hti jk r

hh v hht 0
i j vt

vh vvt v

g e 0i ME Z e
MiZπ rE 0 g e

φ
−

φ

⎛ ⎞ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ε ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 (8) 

Let h vj( )2 h

v

g e
g

φφ −β =   

β  is identical in transmit and receive since 
the same radiating element is used in both modes.    

Then 

 

 

 

 

 

( )
h v

ht

i ( + )1 j h v ho 24
h v -1i

vh vvt

β 0E i ε MZ e= g g e
Mε i2π r 0 βE

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

ojk r φ φ

 (9) 

In a similar manner to the analysis for 
transmit, it can be shown that the receive voltage 
collected by the entire array after beamforming is 
given by 

 

 

 

( )
hr vro ijk r 1 jhr h h h hr0 24

h v 1 i
v v vvr vr0

V R 0 i Eλ e= g g e
0 R iV r E8πZ

φ +φ−

−

β ε ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟β ε⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 (10) 

where 

T0 mn T0 mn

, ,
-j(k -k ) r -j(k -k ) r

h hmn v vmn
m,n m,n

R = R e and M = R e⋅ ⋅∑ ∑T T

M N M N

 

Rh and Rv are the horizontally and vertically 
receive polarized antenna array factors physically 
incorporated in the receive manifolds.  The 
coefficients of Rh and Rv are the aperture 
weighting factors that determine the antenna 
receive sidelobes and beamwidth.  Ehr and Evr are 
the reflected electric field components incident on 
the antenna. The reflected field of a single 
scattering object is given by the scattering matrix 

i
hthh vhhr
i

vr vh vv vt

Es sE
=

E s s E

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  (11) 

For the case of simultaneous transmission and 
simultaneous reception, the scattering matrix is 
assumed diagonal. 

Combining 7, 10 and 11 we get 

 

 

h v
o

r
jh h h vh h hh hj2k r 2

h v2 1r 1
v v v vv vh vv

R 0 0ii s 0 MV λ= e g g e
i 0 s Mi4πr 0V 0 R

φ +φ
−

−−

β⎛ ⎞ β⎛ ⎞ εε ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ε ε ββ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠  (12) 
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Evaluating (12), we get 

h v

h v

j2 2 2 2h 2
hh h h h v v vv h h h v v h h v

0

j2 2 2 2v 2
hh v h h v v vv v h h v v v h v

0

V s (i M i M ) s ( M i M ) R g g e
C

V s ( i M M ) s (i M i M ) R g g e
C

φ +φ

φ +φ
− −

⎡ ⎤= β + ε + ε β + ε⎣ ⎦

⎡ ⎤= ε + ε β + ε + β⎣ ⎦

 (13) 

 

 

 

where   C0  =  
j2kr

2

e
4 r

−λ
π

 

Integrating the right hand side of (13) over the 
beamwidth of the antenna, we get 

h hh
0

v vv

V sA B
C

V sC D
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (14) 

where 

h vj2 2 2h h h v v h h vA (i M i M )R g g e d
φ +φ

= β + ε Ω∫∫
 (15) 

h vj2 2 2h h h v v h h vB ( M i M )R g g e d
φ +φ

= ε β + ε Ω∫∫
 (16) 

h vj2 2
v h h v v v h vC ( i M M )R g g e d

φ +φ

= ε + ε Ω∫∫   

  (17) 
h vj2 2 2

v h h v v v h vD (i M i M )R g g e d
φ +φ

−= ε + β Ω∫∫
 (18) 

Equation (14) is solved to obtain shh  and svv.  
For the purposes of analysis of the antenna 
parameter deviations on the estimate of Zdr, the 
scattering parameters are assumed to have a 
uniform density and fill the entire beam-width. 

Combining (14) and (15), we get 

 

 

 

hh h

vv v

s VD B1
s VC A

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (19) 

determinant = Δ = AD  +  BC 
 

h vhh

vv h v

DV BVs
s CV AV

−
=

− +
 (20) 

 

( )
* * * *

h vh vhh
** * *

vvv h v h

2 (DV BV )s (D V B V )
s CV AV ( C V A V )

− −
=

− + − +
 

( )2 2 ** vh v hhh
2 2 ** vvv h v h

2 DV (BV ) 2 Re DV B Vs
s CV (AV ) 2 Re(CV A V )

+ −
=

+ −
 (21) 

For small matched h and v beamwidths, where 
variations of the antenna parameters are 
negligible over the beam, Zdr for a specific beam-
pointing angle is given by: 

 

 

 

 

22
4 2 2v v v h v v v v hh h h

dr
v h h h v v v h h h h v

M R i R V M R VV MZ 1
V M R i i M R V i M R V

− −⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ εε
= β + β − − β −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
(22) 
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v

h

i
i

 is the ratio of he antenna co-polar unit 

vectors characteristics and v

hi
ε

and h

vi
ε

are the 

antenna cross-pol. characteristics.  

The measured values of Vh and Vv are the 

received voltages at the output of the receiver 
horizontally and vertically polarized receiver 
manifolds.  All other parameters will be measured 
in real time or during a calibration of the antenna 
and   Zdr is then obtained by substitution of these 
values into expression (22).  Expressing Zdr in 
terms of the antenna gains and powers yields:  

 
22 2 4

j jv tv rv v h th v v tv rv vhh h h rh h
dr

vv v h th rh h v v tv rv v h h th rh h

h v

P G G i P G P G G VS V G VZ 1 e e
S V P G G i i P G G V i P G G V

where

Δ Δ− φ φ

Δ

⎛ ⎞ ⎛ ⎞εε
= = + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
φ =φ −φ  

  (23) 

 

 

2.  MEASUREMENT TOLERANCE REQUIRED TO 
ACHIEVE drZ  

This section considers the required 
measurement accuracies required to achieve a 
specified Zdr within a tolerance range for the 
parameters in equation (22) for Zdr.   The 
following equations summarize the analysis of the 
allowable worst-case (maximum allowable 
amplitude variation at all phase angles) variation 
of the parameters in equation (22) for a specified 

variations in ( )Δ drZ dB when the ratios v

h

M
M

and 

v

h

R
R

 are assumed to have a nominal value of 

unity and the and the absolute magnitude of the 
cross pol parameters are set equal  

to each other, i.e. vh

v vi i i
εε ε

= =  

 

2 2v h

h v

( )( )
V V1 2 2
V V

−

Δ
Δ <

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞
⎡+ + + +⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

v dr

h

M Z dBdB
M

i
ε β β

 (24) 

2 2v vh h

h v v h

( )( )
V VV V1 2 2
V V V V

−

Δ
Δ <

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

h dr

v

V Z dBdB
V

i
ε β β

 (25) 

2 2vh h

v h v

( )( )
VV V1 1 1 2

V V V
−

Δ
Δ <

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

v dr

h

R Z dBdB
R

i
ε β β

 (26) 

( )( )
2

Δ
Δ <v dr

h

i Z dBdB
i

 (27) 
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v dr

h 2v h

h v

ε ΔZ (dB)Δ (dB)<
i ε Vβ 1+

i V
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (28) 

drh

v -2 vh

v h

ΔZ (dB)εΔ (dB)<
i Vε β 1+

i V
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (29) 

2 -2v h

h v

( )( )
V V3 ε4 1+ β 1+ + β 1+

2 i V V

Δ
Δ <

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

drZ dBdBβ  (30) 

At a specific frequency and beam pointing 
angle errors in the parameters in equation (19) 
contributes an error in Zdr.   

A typical example is illustrated here for the 
case when the bias errors for each of the 
measured parameters are nominally assumed 
equal to zero and the horizontal and vertically 
polarized beams have matched beamwidths.  A 
preliminary budget of allowable component 
tolerances to achieve drΔZ =0.2 dBpk due to 
uncertainties in the parameter measurements of 
the variables is shown in Table 1 for nominal 
values of abs (Vh/ Vv) =1 (corresponding to a Zdr 

approximately equal to 0 dB).   

The first six columns list the nominal values of 
the antenna parameters.  The eighth column of the 
table is a nominal allocation of the standard 
deviation of drΔZ in dBrms to each of the 
polarization compensation variables listed in 
column 7.  The sum of the entries in this column is 
equal to 0.2 dBpk.  Column 9, the component 
tolerance is obtained by calculating corresponding 
component tolerances from equations (24) to (30).  
In the case of small errors, 2

h v(abs(V / V ))  is 

approximately equal to drZ . 

Mv/

Mh 

(dB)

abs
(Vh/

Vv)

iv/i
h

β
εvh 

(dB)
εhv (dB)

Allocated 
ΔZdr 

budget 
dBpk

 
Compo

nent 
dBrms

ΔZdr 
dBpk

1 1 1 1 27 27 ΔMv/Mh 0.0185 0.0049
1 1 1 1 27 27 abs(Vh/Vv) 0.0200 0.0053

1 1 1 1 27 27 abs(Rv/Rh) 0.0200 0.0054
1 1 1 1 27 27 iv/ih 0.0600 0.0100

1 1 1 1 27 27 β 0.0600 0.0158

1 1 1 1 27 27 εvh 0.0120 0.0448

1 1 1 1 27 27 εhv 0.0120 0.0448

0.20

 

Table 1. Budget of Component Standard Deviations for drΔZ =0.2 dBpk  
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The accuracy requirements in equations (24) 
to (30) are for the total antenna.  Variations in, 

v v

h h

M R
and

M R
occur as a consequence of 

amplitude and phase errors in each of the 
radiating element paths. The element level errors 
change at every beam position in a random 
fashion and, therefore, there is a corresponding 
change in the value of Zdr.  Minimizing the 
allowable spread in Zdr requires that the 
measured element amplitude and phase errors be 
controlled within corresponding bounds. Similar 
considerations apply to the errors in the received 
voltage ratio given by Rh/Rv.   

The allowable element level amplitude error in 
the measurement of the signal coupled from each 
element has been analyzed using a Monte Carlo 
approach and the results showing the allowable 
element level voltage and phase are shown in 
Figure 5 for phased arrays with 1224, 4896 and 
9792 elements for various values of delta Zdr, for 
cross polarization values of 27 dB when the h and 
v beams are matched.  Measurement 
requirements are inversely proportional to the 
number of elements in the array and are more 
stringent for antennas with low cross-polarization 
characteristics. 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2
Amplitude error (dBrms)

D
el

ta
 Z

dr
 (d

B
pk

)

1224 elem. 4896 elem. 9792 elem.  
Figure 5  Allowable element amplitude to achieve delta Zdr (cross-pol=27 dB, Mh/Mv=Rv/Rh=1, 

Iv/ih, β=1) 

CONCLUSIONS 
The requirement to achieve accurate 

measurements of Zdr presents new challenges to 
the design of phased arrays.  Unlike dish antennas 
whose properties are generally invariant with 
respect to scan angle, transmitter and receiver 

imbalance and antenna cross polarization change 
over the scan coverage of the antenna.   A 
polarization compensation approach utilizing 
antenna calibration and real time measurement 
can be used to correct the measured scattering 
matrix and provide improved measurement 
accuracy for Zdr. 
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