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1. Introduction
Throughout the history of numerical

weather prediction (NWP), computer
resources have increased to enable NWP
models to run at progressively higher
resolutions over increasingly large domains.
Several modeling studies (e.g., Done et al.
2004; Kain et al. 2006; Weisman et al. 2008;
Kain et al. 2008a; Schwartz et al. 2008)
using convection-allowing [no convective
parameterization (CP)] configurations of the
Weather Research and Forecasting (WRF)
model with horizontal grid spacings of ~ 4
km have demonstrated the added value of
these high-resolution models as forecast
guidance tools for the prediction of heavy
precipitation.  Additionally, these
experiments have revealed minimal adverse
effects from running the WRF model at 4 km
without CP, even though this grid spacing is
too coarse to fully capture convective scale
circulations.   Given the success of these
convection-allowing WRF forecasts, ~ 4 km
convection-allowing models have become
operational at the United States National
Centers for Environmental Prediction
(NCEP) in the form of “high-resolution
window” deterministic forecasts produced by
the Environmental Modeling Center (EMC)
of NCEP.
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focused on deterministic model solutions.
But when convection-allowing models are
used to predict intense localized features
such as thunderstorms, even small
displacement errors can produce large
errors in amplitude at individual grid points.
In recognition of this problem, post-
processing and verification methods have
been developed that relax the requirement
that deterministic model output and
corresponding observations match exactly in
order for a forecast to be considered correct
(Theis et al. 2005; Roberts 2005; Roberts
and Lean 2008).  These “neighborhood”
approaches have also been used to
generate probabilistic information from
deterministic grids  Theis et al. (2005)
suggested that a neighborhood approach
could be combined with traditional methods
of producing probabilistic forecasts, a
strategy that is explored herein.

Probabilistic predictions are, by
nature, superior to deterministic forecasts at
providing guidance for rare events, such as
severe thunderstorms or heavy precipitation
(Murphy 1991).  The probabilistic format
allows forecasters to quantify uncertainty
such that their forecasts can reflect their
best judgments and, perhaps more
importantly, allow users to make better
decisions as compared to yes-no forecasts
(Murphy 1993).  Numerical guidance for
probabilistic forecasts is commonly derived
from an ensemble forecasting system,
where an ensemble is comprised of a suite
of individual forecasts, each generated from
Thus far, convection-allowing WRF
tudies (e.g., Done et al. 2004; Kain et al.
006; Weisman et al. 2008; Kain et al.
008a; Schwartz et al. 2008) have all
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a unique combination of initial conditions
(IC), lateral boundary conditions (LBC),
physical parameterizations, and/or dynamics
formulations.  IC and LBC diversity
acknowledges the uncertainty of
meteorological observations and the data
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assimilation systems that incorporate
observations into the model grids, while
differing model physics recognizes the
uncertainties inherent in the
parameterizations of small-scale, poorly-
understood processes, such as cloud
microphysics (MP) and turbulence.

Ideally, all ensemble members are
assumed to be equally likely to represent the
true” condition of the atmosphere at
initialization, and thus, have an equal
chance of producing the best forecast at a
later time.  Usually, initial fields differ only
slightly, and forecasts from the members are
quite similar at early time steps.  However,
these differences may amplify with time,
owing to the chaotic nature of the
atmosphere, such that by the end of the
model integration, different ensemble
members can arrive at wildly different
solutions.  The spread of the ensemble
members (in terms of standard deviation) is
typically associated with perceived forecast
uncertainty, and point probabilities are
commonly obtained by considering the total
number of members predicting an event at a
given grid box.  Alternatively, information
from all the members can be averaged into
a mean deterministic field.  As errors of
different members tend to cancel in the
averaging process, this ensemble mean
consistently performs better than any of the
individual members.  Furthermore,
numerous studies (e.g., Stensrud et al.
1999; Wandishin et al. 2001; Hou et al.
2001; Bright and Mullen 2002) have shown
that an ensemble system, in terms of its
ensemble mean, performs comparably to or
better than a similarly configured, higher-
resolution deterministic forecast, as
measured by objective metrics.

Medium-range (3-15 days)
ensemble forecasts have been produced
operationally at NCEP since the early
1990s, but the development of short-range
(0-3 day) ensemble forecasts (SREF)
lagged somewhat.  Following the
recommendation of participants in a
workshop designed to explore future SREF
implementation (Brooks et al. 1995),
experimental SREF runs were initiated at
NCEP in 1995 (Du and Tracton 2001).
Given the success of the experimental
forecasts, the use of SREFs continued, and
they became operational at NCEP in 2001.
The current NCEP SREF employs 21

members at 32-45 km grid spacing (Du et al.
2006) and is run four times daily, starting at
0300, 0900, 1500, and 2100 UTC.
Variations in physical parameterizations,
dynamic cores, ICs, and LBCs are used to
create forecast diversity (Du et al. 2006).

Given the benefits of ensemble
forecasting and previous successes of
convection-allowing 4 km WRF deterministic
forecasts, the Center for Analysis and
Prediction of Storms (CAPS) at the
University of Oklahoma, supported by a pilot
three-year NOAA (National Oceanic and
Atmospheric Administration) Collaborative
Science, Technology, and Applied Research
(CSTAR) project, contributed large domain,
realtime, 10-member, 4 km convection-
allowing ensemble forecasts to the 2007
NOAA Hazardous Weather Testbed Spring
Experiment1 (hereafter SE2007).  Variations
in ICs, LBCs, and physical
parameterizations were used to achieve
ensemble diversity.  On its own, these
ensemble forecasts represented a
groundbreaking computational achievement
(see Xue et al. 2007) and to our knowledge
is the first time a high-resolution, convection-
allowing ensemble has been run in a
realtime setting.

The goal of this study is to examine
methods of extracting probabilistic guidance
from the CAPS ensemble.  A new method of
extracting probabilistic ensemble guidance
that applies a “neighborhood” approach to
the ensemble [as suggested by Theis et al.
(2005)] is presented.  The ensemble
configuration and experimental design are
discussed next, followed by a discussion of
traditional and new methods of generating
probabilistic ensemble forecasts in section
3.   These forecasts are verified in section 4
prior to concluding.  It is hoped that output
from high-resolution ensemble NWP
systems can be incorporated into future
hydrometeorological models.

                                                          
1 This experiment, formerly called the
SPC/NSSL (Storm Prediction Center/National
Severe Storms Laboratory) Spring Program, has
been conducted from mid-April through early
June annually since 2000.  Details about the
experiments can be found at URL
http://www.nssl.noaa.gov/hwt.
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                         Ensemble member configurations

Table 1. Ensemble member configurations.  The WRF Single-Moment 6-class
(WSM6)(Hong et al. 2004), Ferrier (Ferrier 1994); Thompson (Thompson et al. 2004);
Mellor-Yamada-Janjic (MYJ)(Mellor and Yamada 1982, Janjic 2002) and Yonsei
University (YSU) (Noh et al. 2003) schemes are used.  NAMa and NAMf refer to NAM
analyses and forecasts, respectively.

2. Experimental design

2.1  Model configurations
On each of the ~35 days of SE2007,

CAPS produced 10-member ensemble
forecasts with 4 km grid spacing (Xue et al.
2007; Kong et al. 2007).  The ensemble
forecasts were generated remotely at the
Pittsburgh Supercomputing Center (PSC).
All ensemble members used version 2.2 of
the Advanced Research WRF (WRF-ARW)
dynamic core (Skamarock et al. 2005),
represented convection explicitly (no
convective parameterization), resolved 51
vertical levels were initialized with a “cold-
start” (no data assimilation) at 2100 UTC,
and ran for 33 hours over a domain
encompassing approximately three-fourths
of the continental United States (Fig. 1).

       Fig. 1. Model domain of the CAPS
ensemble forecasts.

The configurations of the ensemble
members are summarized in Table 1.  ICs
were interpolated to the 4 km grids from a
2100 UTC analysis of the 12 km NAM (J.
Du, NCEP/EMC, personal communication).
Different IC, LBC, and physics perturbations
were introduced in four of the ten ensemble
members (n1, n2, p1, p2; hereafter
collectively referred to as the “LBC/IC”
members).  IC perturbations for the LBC/IC
members were extracted from the four WRF
perturbed members [two WRF-ARW
(Skamarock et al. 2005) and two WRF-NMM
(Nonhydrostatic Mesoscale Model; Janjic et
al. 2001; Janjic 2003)] from the 2100 UTC
NCEP SREF, and the LBCs came from the
four corresponding members of the 2100
UTC SREF.  LBCs for the remaining six
members (cn, ph1, ph2, ph3, ph4, ph5;
hereafter collectively referred to as the
“physics-only” members) were provided by
1800 UTC 12 km NAM forecasts.These six
members used identical ICs and LBCs and
differed solely in terms of microphysics and
PBL parameterizations. Additional details on
the ensemble configurations can be found in
Xue et al. (2007) and Kong et al. (2007).

2.2  Verification parameters
           At the conclusion of SE2007, average
ensemble performance characteristics were
assessed using several statistical measures

Member IC LBC Microphysics PBL physics
cn 2100 UTC NAMa 1800 UTC NAMf WSM 6-class MYJ
n1 cn – arw_pert 2100 UTC SREF arw_n1 Ferrier MYJ
p1 cn + arw_pert 2100 UTC SREF arw_p1 Thompson MYJ
n2 cn – nmm_pert 2100 UTC SREF nmm_n1 Thompson YSU
p2 cn + nmm_pert 2100 UTC SREF nmm_p1 WSM 6-class YSU

ph1 2100 UTC NAMa 1800 UTC NAMf Thompson MYJ
ph2 2100 UTC NAMa 1800 UTC NAMf Ferrier MYJ
ph3 2100 UTC NAMa 1800 UTC NAMf WSM 6-class YSU
ph4 2100 UTC NAMa 1800 UTC NAMf Thompson YSU
ph5 2100 UTC NAMa 1800 UTC NAMf Ferrier YSU
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Fig. 2. Verification domain used for model
climatology.

applied primarily to hourly precipitation
fields.  Hourly model precipitation forecasts
were compared to Stage II precipitation
grids produced hourly at NCEP (Lin and
Mitchell 2005).  Stage II precipitation fields
are generated from radar and rain gage data
(Seo 1998), and they were regarded as
“truth.”

Objective verification of the model
climatology was performed over a fixed
domain comprising most of the central
United States (Fig. 2).  This domain covered
a large area over which Stage II data were
robust and springtime weather was active.
Additionally, this region was also sufficiently
removed from the lateral boundaries so as
to minimize contamination from the
boundaries.  Attention was focused on the
f21-f33 (1800-0600 UTC) period to examine
the utility of the ensemble as next-day
forecast guidance.  When possible, statistics
were computed on native grids.  However, in
order to calculate certain performance
metrics (discussed below), it was often
necessary that all data be on a common
grid.  Therefore, for certain objective
verification procedures, model output was
interpolated onto the Stage II grid (grid
spacing of ~ 4.7 km), which will be referred
to as the “verification grid.”

3. Extracting forecast probabilities:
Traditional and new approaches

A widely used approach for
computing probabilities from an ensemble is
summarized, followed by discussion of a
lesser known post-processing method for
extracting forecast probabilities (FPs) from
single deterministic predictions.  Then, a
simple strategy for combining these two
approaches is presented.  Though these
methods can be applied to any
meteorological field, they are discussed here
within the context of precipitation
forecasting.

3.1 Traditional method
In an uncalibrated ensemble

system, all members are assumed to have
equal skill when averaged over many
forecasts.  Under this assumption, members
are weighted equally and the ensemble-
based probability can be thought of as the
average of the FPs for individual members.
The individual FPs are simply 1 or 0 at a
given grid point, depending on the
occurrence (1) or non-occurrence (0) of an
event, where an “event” typically means
exceedance of a specified threshold.  For
example, in the context of precipitation
forecasting, an accumulation threshold (q) is
chosen to define an event, and the individual
grid-point FPs are given by

 
  0
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where F is the raw accumulation of
precipitation at the grid point, the subscript k
refers to the kth ensemble member, and the
subscript i denotes the ith grid point.   Here, i
ranges from 1 to N, the total number of grid
points in the computational domain.  After a
binary grid is generated for each ensemble
member according to Equation 1, the
traditional ensemble probability (EP) at the
ith grid point, can be computed as a mean
value according to
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where n is the number of members in the
ensemble.

3.2   A “neighborhood” approach
The above method for computing

EPi utilizes raw model output at individual
grid points.  However, in general, models
have little skill at placing features that are
comparable in scale to their grid spacing.
Thus, as horizontal grid length has
decreased in recent years to the sizes of
convective-scale features, a variety of
methods that incorporate a “neighborhood”
around each grid point have been developed
to allow for spatial and/or temporal error or
uncertainty [reviewed in Ebert (2008)].  As
model grid length continues to decrease,
these newer methods seem destined to be
used more regularly.  Although the
neighborhood methods are used most often
for verification purposes [e.g., Roberts and
Lean (2008)], here they are employed to
create non-binary FPs from individual
deterministic forecasts [e.g., Theis et al.
(2005)].

Application of the neighborhood
approach to generate FPs begins with a
binary grid, created in accordance with
Equation 1, from a deterministic forecast
(e.g., one of the ensemble members).  Next,
following Roberts and Lean (2008), a radius
of influence (r) is specified (e.g., r = 25, 50
km) to construct a “neighborhood” around
each grid box in the binary field2.  All grid
points surrounding a given point that fall
within the radius are included in the
neighborhood.  Whereas Roberts and Lean
(2008) constructed a square neighborhood
around each grid box, a circular
neighborhood was used in this study.
Essentially, choosing a radius of influence
defines a scale over which the model is
expected to be accurate, and this scale is
applied uniformly in all directions from each
grid point.

To generate a fractional value at
each point, the number of grid boxes with
accumulated precipitation ≥ q (i.e., the
                                                          
2 At this point, the optimal value of r is
unknown, and this optimum may vary from
model to model.  In fact, Roberts (2008)
suggests that the optimal radius of influence
varies within a single model configuration
and is a function of lead time.

number of 1s in the binary field) within the
neighborhood is divided by the total number
of boxes within the neighborhood.  This
“neighborhood probability” (NP) at the ith
grid point can be expressed as

    

                   
∑
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b
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,
where Nb is the number of grid points within
the neighborhood of grid point i.  Although
for a given value of r the number of points
within the neighborhood (Nb) is the same for
each of the N grid boxes, the ith grid box
specifies a unique set of points on the model
grid that comprise the neighborhood (i.e., on
the RHS of Equation 3, the subscript m,
which selects the boxes within the
neighborhood, depends on i).

Figure 3 illustrates the determination
of a neighborhood and computation of NPi
for a hypothetical model forecast using a
radius of influence of 2.5 times the grid
spacing.  Grid boxes within the radius of
influence of the central grid square are
included in the neighborhood.  Note that by
using circular geometry, the corner grid
points are excluded, such that the
neighborhood consists of 21 boxes. Grid
boxes with accumulated precipitation ≥ q are
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Fig. 3. Schematic example of neighborhood
determination and fractional creation for
a model forecast.  Precipitation exceeds
the accumulation threshold in the
shaded boxes, and a radius of 2.5 times
the grid length is specified.
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Fig. 4 (a) Control member (cn) 1-hr accumulated precipitation forecast (mm hr-1), (b) binary image
(i.e. an FP grid) of precipitation accumulations exceeding 5.0 mm hr-1, and NP grids
computed from (b) using radii of influence of (c) 25 km and (d) 75 km.  All panels are
valid 0600 UTC 23 May 2007 and the control member has been projected onto the
verification grid.

shaded, and these are assigned a value of
1.  In this example, the event occurs in 8 out
of 21 grid boxes, so NPi = 0.38, or 38%.

Figure 4 illustrates the impact of this
procedure using a forecast from the control
member of the ensemble (cn).  The forecast
was valid at 0600 UTC 23 May—a lead time
of 33 hours—and the model output is
displayed on the verification grid.  The raw
precipitation forecast is shown in Fig. 4a and
the binary field (the FPi field) corresponding
to q = 5.0 mm hr-1 is plotted in Fig. 4b.  Note
that the binary field can also be considered
the NP field generated using r = 0 km.  As r
is increased to 25 km (Fig. 4c) and then 75
km (Fig. 4d), the character of the NP field
changes substantially.  Specifically, as r
increases from 25 to 75 km, maximum
probabilities decrease from over 90% to
70% (and even lower) over north-central
Kansas and extreme southeast South
Dakota.  Evidently, in this case, as the
radius of influence expands to include more
points in the neighborhood, few of these
newly-included points contain precipitation
accumulations ≥ q.  In general, whether NPi
values increase or decrease as the radius of
influence changes is highly dependent on
the meteorological situation.  However, for

most situations, increasing r reduces the
sharpness (Roberts and Lean 2008) and
acts as a smoother that reduces gradients
and magnitudes in the NP field.

3.3 Combining traditional and
neighborhood approaches

When the neighborhood method is
applied to each ensemble member
individually, a set of n NPi grids are
generated.  These grids are directly
analogous to the binary FPi grids, but
instead of being limited to values of 0 or 1,
the point values comprise a continuum from
0 to 1.  Just as the FPi values are averaged
over all members to produce traditional
ensemble probabilities (EPi), the NPi values
can be combined to produce a new
neighborhood ensemble probability (NEP)
according to

∑
=

=
n

k
kii NP

n
NEP

1

1

.

To demonstrate the characters of
the traditional and neighborhood
probabilistic products, an example is given
for the ensemble forecast valid 2100 UTC
15 May, focusing on the 1.0 mm hr-1

(4)
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(a) (b)

(d)(c)

(f)(e)

(a)(a) (b)(b)

(d)(d)(c)

(f)(f)(e)(e)

Fig. 5. Hourly probability forecasts of precipitation meeting or exceeding 1.0 mm from the
(a) EP and NEP (see text) using radii of influence of (b) 25 km (c) 50 km (d) 75
km (e) 125 km.  The observed precipitation is shown in (f).  Both the model
fields and observations are valid 2100 UTC 15 May.  The domain is the same as
the verification domain (Fig. 2).

accumulation threshold (Fig. 5).  The
traditional probability field (i.e., the EP) is
very detailed and rather noisy (Fig. 5a).  On
the other hand, the NEPs become
increasingly smooth as r increases from 25
to 125 km (Fig. 5b-e).

In general, the NEP field highlights
the same areas as the EP.  However, the
NEP field is more aesthetically pleasing, and
it inherently focuses on spatial scales where
there is likely to be at least some accuracy.
Additionally, it smoothes out any
discontinuities in the EP field.  The NEP
fields are now objectively verified and
compared with corresponding EP fields.

4. Verification of probabilistic fields
The fractions skill score (FSS)

(Roberts 2005; Roberts and Lean 2008) and
relative operating characteristic (ROC)
(Mason 1982) were adopted to verify the
probabilistic guidance considered in this
study.  To use both of these metrics, it was
necessary to project the model forecasts
onto the verification grid to directly compare
the probability fields with the observations.
This interpolation was done before the
fractional grids were generated from the
individual ensemble members.  That is, the
direct model output, rather than the
fractions, was interpolated to the verification
domain.
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Fig. 6. Schematic example of neighborhood determination and fractional creation for (a)
a model forecast and (b) the corresponding observations.  Precipitation exceeds
the accumulation threshold in the shaded boxes, and a radius of 2.5 times the
grid length is specified.

4.1 The fractions skill score
Probabilistic forecasts are

commonly evaluated with the Brier Score or
Brier Skill Score (Brier 1950) by comparing
probabilistic forecasts to a dichotomous
observational field.  However, the FSS
applies the neighborhood approach to the
observations in the same way it is applied to
model forecasts, changing the dichotomous
observational field into an analogous field of
observation-based fractions (or
probabilities).  The two sets of fraction fields
(forecasts and observations) are then
compared directly by the FSS.  Whereas
Fig. 3 depicts the creation of a fraction grid
for just a model forecast, Fig. 6 shows the
creation of a fraction grid for this same
hypothetical forecast and the corresponding
observations.  Notice that although the
model does not forecast precipitation ≥ q at
the central grid box, when the surrounding
neighborhood is considered, the same
probability as the observations is achieved
(8/21 =  0.38).  Therefore, in the context of a
radius r, this model forecast is considered
correct.

After the raw model forecast and
observational fields have both been
transformed into fraction grids, the fraction

values of the observations and models can
be directly compared.  A variation on the
Brier Score is the Fractions Brier Score
(FBS) (Roberts 2005), given by

( )
2

1
)()(

1 ∑
=

−=
vN

i
iOiF

v

NPNP
N

FBS
,

where NPF(i) and NPO(i) are the
neighborhood probabilities at the ith grid box
in the model forecast and observed fraction
fields, respectively.  Here, as objective
verification only took place over the
verification domain (Fig. 2), i ranges from 1
to Nv, the number of points within the
verification domain on the verification grid.
Note that the FBS compares fractions with
fractions and differs from the traditional Brier
Score only in that the observational values
are allowed to vary between 0 and 1.

Like the Brier Score, the FBS is
negatively oriented—a score of 0 indicates
perfect performance.  A larger FBS indicates
poor correspondence between the model
forecasts and observations.  The worst
possible (largest) FBS is achieved when
there is no overlap of non-zero fractions and
is given by

(5)
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Fig.7. Fractions skill score (FSS) as a function of radius of influence, aggregated during
1800-0600 UTC (f21-f33) over all days of SE2007 using accumulation
thresholds of (a) 0.2 mm hr-1, (b) 0.5 mm hr-1, (c) 1.0 mm hr-1, (d) 2.0 mm hr-1,
(e) 5.0 mm hr-1, and (f) 10.0 mm hr-1.  The traditional ensemble probability is
denoted as EP and the neighborhood probabilities as NEP.  Probabilities for
the individual members of the ensemble were computed as NPs.  Note that the
EP field does not change as a function of radius, while the others do.
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On its own, the FBS does not yield much
information since it is strongly dependent on
the frequency of the event (i.e., grid points
with zero precipitation in either the
observations or model forecast can
dominate the score).  However, a skill score
(after Murphy and Epstein 1989) can be
constructed that compares the FBS to a low-
skill reference forecast—FBSworst—and is

defined by Roberts (2005) as the fractions
skill score (FSS):

worstFBS
FBSFSS −=1

.

The FSS ranges from 0 to 1.  A
score of 1 is attained for a perfect forecast
and a score of 0 indicates no skill.  As r
expands and the number of grid boxes in the
neighborhood increases, the FSS improves

(6)

(7)
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Fig. 8. Fractions skill score (FSS) plotted as a function of forecast hour for a fixed accumulation-
rate threshold of 5.0 mm hr-1and radii of influence of (a) 25 km, (b) 50 km, (c) 75 km, (d)
100 km, (e) 125 km, (f) 150 km, (g) 175 km, and (h) 200 km, averaged over all days of
SE2007.

as the observed and model probability fields
are smoothed and overlap increases,
asymptoting to a value of 2B/(B2 + 1), where
B is the frequency bias (Roberts and Lean
2008).

4.2  Verification results
FSS aggregated over all days of

SE2007 during the 1800-0600 UTC (f21-f33)
period is shown in Fig. 7 for various hourly
absolute precipitation thresholds.  The FSS
improved as r increased.  As q increased,
the FSS worsened at all scales, indicating
the models had less skill at predicting
heavier precipitation.

The FSS indicates that at all
accumulation thresholds, the NEP produced
the most skillful forecasts for r > 25 km.
Moreover, the advantage of the NEP
increased with increasing q.  This finding
indicates that the NEP (Equation 4)
improves upon the traditional ensemble
probability (Equation 2), especially for
extreme event prediction. Of the individual
members, the n2 and p2 members

consistently ranked the lowest, while the
physics-only members were tightly bunched.
FSS as a function of time for q = 5.0 mm hr-1

(Fig. 8) indicated NEPs performed the best
at nearly all times for all values of r.

In a sense, the EP was
handicapped in the computation of FSS
because this field did not change as a
function of r, while the verifying field (and all
the other FPs) did.  However, the advantage
for the NEP is also evident with other
performance measures, such as the relative
operating characteristic (ROC; Mason
1982).  For the ROC, a family of contingency
tables (Table 2) is constructed for the
probabilistic forecasts by selecting different
probabilities as yes-no thresholds (i.e., for
the 30% threshold, all model grid points with
probabilities equal to or greater than 30%
are considered to forecast the event).  Using
the elements of Table 2, the probability of
detection [POD = a/(a+c)] and probability of
false detection [POFD = b/(b+d)] can be
computed for each probability threshold, and



11

Fig. 9. Relative operating characteristic (ROC) diagrams using data aggregated during 1800-0600
UTC (f21-f33) over all days of SE2007 using  accumulation thresholds of (a) 0.5 mm hr-1,
(b) 1.0 mm hr-1, (c) 2.0 mm hr-1, and (d) 5.0 mm hr-1.   

the ROC is formed by plotting POFD against
POD over the range of probabilistic
thresholds (Fig. 9).  The area under this
curve is the ROC area, and forecasting
systems with a ROC area greater than ~
0.70 are considered useful (Stensrud and
Yussouf 2007).  In this study, a trapezoidal
approximation was used to find the area
under the ROC curve.

Using a ROC area of 0.70 as a
threshold to determine forecast utility, the
EP field was unable to produce useful
forecasts when q = 5.0 mm hr-1 (Fig. 10).
However, the NEP field using r ≥ 25 km
provided useful information at all thresholds.
Additionally, ROC areas improved as the
NEP was computed using progressively
larger values of r.  Interestingly, when the
neighborhood approach was applied to just

2 x 2 Contingency Table
Observed

Yes No
Yes a b a+bForecast No c d c+d

a+c b+d
Table 2. Standard 2x2 contingency table for

dichotomous events.

the control member using values of r ≥ 75
km, a greater ROC area equal to or greater
than the traditional ensemble probability was
achieved.  This finding indicates that the
neighborhood method applied to an
individual ensemble member may provide
probabilistic guidance with skill comparable
to the EP.

5. Summary and conclusion
During SE2007, CAPS produced

convection-allowing 10-member ensemble
forecasts.  All members used 4 km
horizontal grid spacing, ran over the same
computational domain, and produced 33
hour forecasts.  LBC, IC, and physics
perturbations were introduced into 4 of the
members while the remaining 6 differed
solely in terms of PBL and microphysics
parameterizations.

A new method of extracting
probabilistic ensemble guidance by applying
a neighborhood approach was presented.
This newer approach was found to produce
better probabilistic guidance, as measured
by the FSS and ROC area, then traditional
ensemble-derived probabilistic guidance.
Moreover, the neighborhood ensemble
probability developed here resulted in a
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Fig. 10. ROC areas computed from Fig. 9
using a trapezoidal approximation.

smoother, more aesthetically pleasing field
that focused on the spatial scales over
which the models were more likely to be
accurate.  These findings indicate that
simple post-processing can be used to
improve high-resolution ensemble forecasts
of heavy precipitation and provide
forecasters with an effective and easy-to-
use product.  Indeed, it seems that post-
processing applied to high-resolution model
output offers much promise (see Kain et al.
2008b and references therein) to both
weather forecasters and
hydrometeorologists.

As high-resolution NWP continues
to progress, a central question is whether
computer resources should be devoted to
single high-resolution deterministic forecasts
or comparatively coarser-resolution
ensemble forecasts.  Although there
remains debate regarding the current
necessity of decreasing grid spacing below
4 km in deterministic models, Kain et al.
(2008a) and Schwartz et al. (2008) suggest
4 km WRF-ARW deterministic forecasts
provide nearly identical value as 2 km output
as next-day guidance for heavy precipitation
forecasting.  Given these conclusions, it
seems reasonable that convection-allowing
ensembles should continue to be tested and
refined, and post-processing options

continue to be explored to optimize
probabilistic ensemble guidance.
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