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1. INTRODUCTION 
 
Both weather and soil conditions are important 
factors in the agricultura*l decision making 
process. For example, phenological pest models 
that predict the evolution of an organism’s life 
and its impact on crops are based on the 
temperature of its environment. Accurate soil 
state predictions can dramatically improve the 
decision making process of the agricultural 
community. 
 
Typically, soil temperature and moisture 
forecasting has been performed using a land-
surface model (LSM). This is a physically-based 
approach that models heat transfer and moisture 
flow between the atmosphere and the soil 
subsurface.  It is usually initialized with current 
subsurface and atmospheric conditions.  This 
NASA-funded project uses such a physical 
modeling system, the High Resolution Land Data 
Assimilation System (HRLDAS) and the Noah 
LSM, to model the evolution of the soil state. The 
Noah LSM is a widely used land surface model 
which is included in the WRF as part of NCEP’s 
operational NAM.  It requires a large number of 
parameters to effectively simulate the energy 
transfer for different land use, soil types, and 
various vegetation states.  
 
This paper describes another method to predict 
soil temperature and moisture prediction. In this 
case, a machine learning approach using a 
regression tree algorithm (Cubist) was developed 
to predict the future soil state based upon current 
soil state and atmospheric conditions. Soil state 
observations and the following hour’s observed 
weather were used as predictors in the 
regression tree and the next hour’s soil state was 
set to be the target. In a regression tree, the data 
is analyzed and rules are developed that break 
the data down into a number of different cases, 
producing a decision tree. A regression equation 
is then generated at each leaf node. In essence, 
a linear approximation to the highly non-linear 
LSM processes is produced for each case. 
 
An example rule and associated regression 
would be: 
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if dsw <= 0.09 and ST5_prev > 12.05 
   ST5_curr = -0.211 + 0.3165 dsw + 

0.83 ST5_prev +  0.13 ST10_prev + 
0.02 AirT + 0.02 TD 
 
That is, if it is night (no downward shortwave 
solar radiation) and the last hour’s 5 cm 
temperature was above 12ºC, apply the 
regression equation (shown above) which 
combines downward solar radiation, the previous 
hour’s 5 cm soil temperature, the previous hour’s 
10 cm soil temperature, the mean air temperature 
in the current hour, and the mean dew point 
temperature in the current hour.  
 
2. METHOD 
 
The machine learning technique is dependent 
upon soil observations.  There are a limited 
number of soil observation sites in the U.S. The 
Soil Climate Analysis Network (SCAN), part of 
the USDA’s Natural Resources Conservation 
Service, was chosen for use in this study due to 
its broad geographic extent (within the 
continental U.S.) and its uniform set of observed 
atmospheric and soil state variables. The network 
is reasonably well maintained and its data are of 
fairly good quality. These sites usually measure 
soil temperature and moisture at depths which 
correspond directly to the HRLDAS/Noah LSM’s 
node depths. This simplifies the verification 
process. SCAN sites with fairly complete 
observational histories were selected from within 
this project’s agriculturally-oriented domain (east 
of the Rockies). 
 
Land-surface modelers were consulted to 
determine the critical atmospheric forcing 
variables that drive the soil state evolution. Cubist 
was provided with 2 years (2005 and 2006) of 
training data for each SCAN site. Using this data, 
regression trees were developed specific to each 
SCAN site. Separate regression trees were 
developed to predict soil moisture and soil 
temperature at 5 cm, 20 cm, 50 cm, and 1m 
below ground. Effectively, eight separate 
regression trees were produced for each site. By 
providing the current soil temperature and 
moisture state, along with the predicted 
atmospheric conditions, these eight sets of rules 
and regressions could be applied to predict the 
soil state one hour into the future. A 48 hour soil 
forecast could then be generated by iteratively 



using the predicted soil state with each hour’s 
weather forecast. 
 
These regression trees were applied to the 2007 
growing season (April-June). For every day within 
this period, a 48 hour soil forecast was produced 
at each site using the same weather data used to 
drive the physically-based model. The machine-
learning forecasts were compared to forecasts 
generated by the HRLDAS/Noah system using 
mean absolute error (MAE) and bias calculated 
at each site over the length of the growing 
season. 
 
3. RESULTS 
 
For soil temperature, the regression tree 
forecasts were better at nearly all the sites and 
depths. At 5 cm (the most important for most 
agricultural applications) and 20 cm, the 
forecasts were clearly better at 24 of the 29 
forecast points. At 50 cm, the data mining 
forecasts were better at 28 of the 29 points. 
There were only two sites where the physical 
model outperformed the data mining approach at 
more than one depth. 
 
Order statistics for the MAEs at each site showed 
that the data mining results were significantly 

better across the board. The extremes and the 
quartiles of the 5 cm temperature forecast MAEs 
for the physical model were over 30% higher than 
those of the regression tree approach. At 20 cm, 
the soil-temperature forecast errors were more 
than 70% worse for the physical model. At 50 cm, 
the errors were more than 2.5 times larger for the 
physical model. The difference is largely due to a 
significant cold bias in the physical model. This is 
a known problem in the HRLDAS/Noah LSM 
model and is currently being addressed by the 
NCAR land surface modeling team. The soil 
temperature forecast MAEs for the data mining 
and physical models are shown in Tables 1-3. 
 
The soil moisture forecasts from the physical 
model are a challenge during the growing 
season. The vegetation state is critical to 
correctly model the transfer of water between 
subsurface nodes. The vegetation type and state 
used by the physical model in this experiment 
was based on spatially and temporally coarse 
climatological data. It is not surprising then, that 
during this season of rapidly changing vegetation, 
the physical model’s soil moisture errors are 
significantly higher than those of the data mining 
approach. These errors are summarized in 
Tables 4-6 below. 
 

 
 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.53 0.68 1.02 1.28 2.67 
HRLDAS 0.85 1.12 1.36 1.79 3.52 
Table 1: Summary of the mean absolute errors for the 5 cm soil temperature forecast for hours 0-60 for the 
29 SCAN sites in degC over the 2007 growing season (April-June).. 
 
 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.29 0.36 0.60 0.82 2.05 
HRLDAS 0.58 0.86 1.17 1.55 3.46 
Table 2: Summary of the mean absolute errors for the 20 cm soil temperature forecast for hours 0-60 for the 
29 SCAN sites in degC, Apr-June 2007. 
 
 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.13 0.24 0.30 0.40 1.19 
HRLDAS 0.33 1.00 1.32 1.79 4.06 
Table 3: Summary of the mean absolute errors for the 50 cm soil temperature forecast for hours 0-60 for the 
29 SCAN sites in degC, Apr-June 2007. 
 
 
 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.48 1.30 1.71 2.10 4.02 
HRLDAS 2.76 5.95 8.08 10.50 17.22 
Table 4: Summary of the mean absolute errors for the 5 cm soil moisture forecast for hours 0-60 for the 29 
SCAN sites in percentile, Apr-June 2007. 
 
 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.15 0.71 1.30 1.73 4.88 
HRLDAS 3.89 6.77 13.54 17.99 26.02 
Table 5: Summary of the mean absolute errors for the 20 cm soil moisture forecast for hours 0-60 for the 29 
SCAN sites in percentile, Apr-June 2007. 
 



 Minimum 1st Quartile Median 3rd Quartile Maximum 
Data Mining 0.08 0.28 0.75 1.40 10.47 
HRLDAS 1.73 4.56 8.29 11.76 22.77 
Table 6: Summary of the mean absolute errors for the 50 cm soil moisture forecast for hours 0-60 for the 29 
SCAN sites in percentile, Apr-June 2007. 
 
 
The physical model has a significant dry bias at 
all depths.  This is a difficult issue to correct. 
HRLDAS has more subsurface nodes than 
observational depths. Soil temperature and 
moisture observations can be used to initialize 
the physical model at some depths, but the 
others cannot be directly set. This can lead to a 
significant shock due to slightly out of balance 
initial conditions, a bias early in the forecast, and 
the development of large forecast errors in future 
lead times.  If observation data is not used to 
initialize the soil state, then previously generated 
model results can be used as pseudo-
observations for initialization. However, over time 
the system may drift from reality. Even with use 
of observations it is difficult to eliminate the 
model’s bias since the solution always trends 
back to a steady state based on the model’s 
physics. The results for soil moisture prediction 
are shown in tables 4-6 and the results indicate 
much better performance for the data mining 
approach. 
 
 
4. CONCLUSIONS 
 
At soil observation sites, the data mining 
approach seems to work much better than the 
physical model. Assumptions in the 
parameterization must be made in order for the 
physical model to work over a large domain.  The 
physical model’s parameters could be tuned for 
that site; however, this would be a challenging 
multidimensional minimization problem for a 
highly non-linear model. In practice, this does not 
seem to be nearly as straightforward as the data 
mining approach. One attractive aspect of this 
machine learning approach is that it requires little 
parameter adjustment by the user.  
 
The data mining approach is dependent upon a 
full set of observations. At locations where there 
is little or no observational history, this approach 
cannot easily be used. It would be worthwhile to 
develop regression trees for each land use and 
soil type pair and then apply those 
rules/regressions at similar non-observational 
locations. However, in the USGS data set, there 
are 27 land use types and 19 soil types. 
Unfortunately, there are so few soil observation 
sites compared to the number of land use and 
soil type combinations that this is not practical. 
 
 
 

5. FUTURE WORK 
 
Vegetation attributes are critical to soil 
temperature and moisture prediction. HRLDAS 
uses climatological vegetation data. The data 
mining approach does not explicitly take the 
vegetation state into account; however Cubist 
may be able to infer something about the 
vegetation state in the rules development by 
considering the month of the observation. A 
major goal of this project is to evaluate whether 
NASA MODIS satellite data can be used to 
provide better estimates of the current vegetation 
state and thus improve the soil temperature and 
moisture forecasts from HRLDAS. The 
development team is currently working to 
incorporate the MODIS data into both the data 
mining approach and the physical model. An 
evaluation of the impact of the MODIS data 
should be available by early next year. 
 
It is also possible that regression tree rules could 
be generated by considering all the observational 
histories as one data set. By including all land 
use and soil types in the training data set, it may 
be possible to produce rules that work 
reasonably well everywhere. The rule generation 
process would hopefully distinguish when it was 
appropriate to make rules based on the land and 
soil characteristics. It is hypothesized that these 
forecasts would not be better than the regression 
trees tuned to a specific site; however, they may 
be competitive with the physical model and 
applicable at non-observing sites. 
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