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ABSTRACT

The performance of an ensemble prediction sys-
tem is inherently flow dependent. The present pa-
per investigates this flow dependence with the help
of linear diagnostics applied to the ensemble pertur-
bations in a small local neighborhood of each model
grid point location ℓ. In particular, a local error co-
variance matrix P is defined for each local region,
and the diagnostics are applied to the linear space
Sℓ defined by the eigenvectors of the ensemble-
based estimate of the local error covariance matrix
to investigate the spatio-temporally changing pre-
dictive quality of the ensemble.

Numerical experiments are carried out with an
implementation of the Local Ensemble Transform
Kalman Filter (LETKF) data assimilation system on
a reduced (T62L28) resolution version of the Na-
tional Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS). Both simulated ob-
servations under the perfect model scenario and
observations of the real atmosphere in a realis-
tic setting are used in these experiments. It is
found that (i) paradoxically, Sl provides an increas-
ingly better estimate of the space of forecast un-
certainties as forecast time increases (ii) Sl pro-
vides a more reliable representation of the space
of forecast uncertainties for cases of more rapid er-
ror growth, that is, for cases of lower predictability
and (iii) a low value of the E-dimension is a reliable
predictor of a good forecast performance by Sl.

1. INTRODUCTION

The purpose of an ensemble prediction system is
to account for the influence of the spatio-temporal
changes in predictability on the forecasts [e.g.,
Kalnay (2002); Palmer and Hagedorn (2006)]. It
is often assumed that an ensemble prediction sys-
tem can provide a closure of the predictability prob-
lem: failures of the system in predicting the fore-
cast error statistics are usually attributed to design
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flaws of the system. Kuhl et al. (2007), KEA07 here-
after, argued that this view should be reconsidered
by showing that the performance of an ensemble
prediction system is inherently flow dependent. We
refer to this dependence as the local predictability
of the ensemble performance.

The study of KEA07 was based on assimilating
randomly located, simulated observations under the
perfect model scenario with an implementation of
the Local Ensemble Transform Kalman Filter data
assimilation system (Hunt et al. 2006; Szunyogh
et al. 2008) on a reduced resolution (T62 and 28
vertical levels) version of the model component of
the National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS). The pur-
pose of the present study is to extend the investi-
gation of KEA07 building to a more realistic setting
by first assimilating simulated observations in real-
istic locations under a perfect model scenario and
then assimilating an operationally used set of ob-
servations of the real atmosphere. The main goal
of our study is to lay the theoretical foundation of
a practical approach to predict the spatio-temporal
changes in the performance of an ensemble predic-
tion system.

The structure of the paper is as follows. In sec-
tion 2, we introduce the diagnostics we use to as-
sess and explain the performance of the ensem-
ble prediction system at the different locations and
times. In section 3, we describe the design of the
numerical experiments. In section 4, we examine
the spatio-temporal evolution of the forecast errors,
which is our preferred way to assess the spatio-
temporal evolution of predictability, and we analyze
the relationship between predictability and our di-
agnostics. In section 5, we summarize our conclu-
sions.

2. DIAGNOSTICS

We use linear diagnostics applied to the ensem-
ble perturbations in a small local neighborhood
of each model grid point to explore the spatio-
temporally changing predictive qualities of the en-
semble. In particular, we define a local state vector



and the associated local covariance matrix to repre-
sent the state and the uncertainty in the state esti-
mate at each grid point. In addition, we introduce a
set of local diagnostics based on the eigen-solution
of the local covariance matrix and a measure of
nonlinearity in the evolution of the local state vec-
tors.

2.1. Local vectors and their covariance

We define a local state vector x(ℓ) with all N state
variables of the model within a local volume cen-
tered at location (grid point) ℓ. For the rest of this
article, we will discuss what to do at an arbitrary lo-
cation ℓ, and so we now drop the argument ℓ. The
mathematical model we adopt to predict the evolu-
tion of uncertainty in a local state estimate (analysis
or forecast), x

a,f , is based on the assumption that
the error in the state estimate,

ξ = x
a,f − z, (1)

is a random variable. In Equation (1) z is the, in
practice unknown, true state of the atmosphere. In
addition, we assume that ξ is normally distributed
with a zero mean. Under this assumption the error
in the state estimate can be fully described by an
error covariance matrix, P, that defines the covari-
ance between the different components of ξ.

We employ a K-member ensemble of local state
vectors, x

(k), k = 1 . . .K, to represent the un-
certainty in the knowledge of the local state. The
ensemble-based estimate of the covariance matrix
P is,

P̂ = (K − 1)−1
K

∑

k=1

δx(k)
(

δx(k)
)T

, (2)

where the ensemble perturbations δx(k), k=1. . .K,
are defined by the difference,

δx(k) = x
(k) − x̄, k = 1 . . .K, (3)

between the ensemble members x
(k), k = 1 . . .K,

and the ensemble mean,

x̄ = K−1
K

∑

k=1

x
(k). (4)

In Equation (2), T denotes the matrix transpose.
Based on Equations (3) and (4) the sum of the
ensemble perturbations is zero at all forecast lead
times, that is,

K
∑

k=1

δx(k) = 0. (5)

Equation (5) indicates that the K ensemble per-
turbations are not linearly independent. Thus, the
dimension of the linear space Sℓ spanned by the
ensemble perturbations cannot be larger than K-1.
(We make an exception with retaining the subscript
ℓ in the notation Sℓ to emphasize that the linear
space we are interested in is defined for the local
neighborhood of each grid point.)

Since P̂ is a nonnegative definite and symmetric
N by N matrix, it has N non-negative eigenvalues,
λ1 ≥ λ2 ≥ . . . ≥ λr . . . ≥ λN ≥ 0, and the N asso-
ciated eigenvectors, un, n = 1, . . . , N , are orthogo-
nal with respect to the Euclidean inner product, that
is, when the eigenvectors are chosen to be of unit
length with respect to the Euclidean vector norm,

(

ui

)T
uj = δij , (6)

where δij = 1 for i = j and δij = 0 for i 6= j. When
the number of components of the local state vec-
tor is larger than the number of ensemble members
(N > K), only the first K − 1 eigenvalues can be
larger than zero. (In what follows, N > K is as-
sumed unless noted otherwise.) In this case, the
normalized eigenvectors associated with the first
K − 1 eigenvalues, uk, k = 1, . . . , K − 1, define
an orthonormal basis in Sℓ. The physical interpre-
tation of the N -vectors uk, k = 1, . . . , K − 1, is that
they represent linearly independent uncertain anal-
ysis and forecast patterns in the ensemble in the
local region.

An arbitrary local state vector x can be decom-
posed as,

x = x̄ + δx, (7)

where δx is the deviation of x from its ensemble
mean x̄. The perturbation vector δx can be further
decomposed as,

δx = δx(‖) + δx(⊥) (8)

where δx(‖) is the component that projects into Sℓ

that is,

δx(‖) =

K−1
∑

k=1

δxkuk (9)

where the coordinate δxk, k = 1 . . .K − 1, can be
computed by

δxk = δx(‖)T
uk. (10)

The vector δx(⊥) denotes the component of δx that
projects into the null space of P̂; that is, δx(⊥) is
that component of the perturbation, which cannot
be represented by the ensemble perturbations. Us-
ing this notation, the error ξ in the state estimate



x
a,f can be decomposed as

ξ = x
a,f−z =

K−1
∑

k=1

(

δx
a,f
k −δzk

)

uk+
(

δxa,f(⊥)−δz(⊥)
)

(11)
= δξ(‖) + δξ(⊥),

where,

δzk = z
T
uk, δξ(‖) =

K−1
∑

k=1

(

δx
a,f
k − δzk

)

uk, (12)

δξ(⊥) = δxa,f(⊥) − δz(⊥).

Although the ensemble mean, or the error in
the ensemble mean, does not appear directly in the
local decomposition of the error (the rhs of Eq 11),
the ensemble mean provides the reference point
for the definition of the basis vectors that span the
space Sℓ.

The main focus of our investigation in this paper
is the linear space Sℓ. We choose diagnostics and
design numerical experiments to identify the condi-
tions under which the evolution of the forecast un-
certainties can be efficiently described in Sℓ. We
emphasize that an ensemble forecast system can,
in principle, describe the evolution of the forecast
uncertainty even if it follows a probability distribution
much more complex than normal. Restricting our
attention to S, however, has a number of practical
advantages. First, studies that attempt to directly
verify the probability distribution forecast face the
problem that a probabilistic forecast can be verified
only in a statistical sense, which means that one
cannot validate the ensemble forecast at a given
time and location (e.g., Toth et al. (2006)). Also,
extreme weather events are rare and it is often im-
possible to collect a large enough sample of them to
verify the performance of the ensemble in their pre-
diction by probabilistic verification scores. In con-
trast, Sℓ is a deterministic forecast of the space
of uncertain forecast features; thus, it can be ver-
ified on a case by case basis. Also, one can ver-
ify whether the error in the prediction of an ex-
treme weather event projects into Sℓ. Of course, Sℓ

by itself carries less information than a quantitative
probability forecast, especially in cases where the
probability distribution is more complex than nor-
mal, but an accurate prediction of the potential error
patterns is still valuable forecast information. Sec-
ond, because Sℓ is a linear space, it justifies the
use of linear statistical post-processing techniques,
such as Hamill and Whitaker (2007), to enhance the
raw probability forecasts provided by the ensemble.

2.2. Explained variance

In order to quantify the performance of Sℓ in cap-
turing the uncertain components of the flow in a
state estimate, we use the explained variance di-
agnostic. Formally, it is calculated as

EV =
‖δξ(‖)‖
‖ξ‖ =

‖δξ(‖)‖
‖δξ(‖) + δξ(⊥)‖ . (13)

Here ‖ ·‖ is the Euclidean vector norm on the space
of the local state vectors. (Since S is a subspace of
the space of the local state vectors, this norm can
be used to measure the magnitude of both the error
and its projection into Sℓ.)

The larger EV , the more efficient Sℓ in captur-
ing the uncertain components of the analysis and
forecast fields. EV takes its maximum value of
one when the entire forecast error projects into Sℓ

(δξ(‖) = ξ and δξ(⊥) = 0), and takes its minimum
value of zero when the forecast error does not have
projection into Sℓ (δξ(‖) = 0 and δξ(⊥) = ξ).

2.3. E-dimension

The ensemble dimension (E-dimension),

E =

[

∑K

i=1

√
λi

]2

∑K

i=1 λi

, (14)

which was introduced by Patil et al. (2001) and dis-
cussed in details in Oczkowski et al. (2005), char-
acterizes the local complexity of dynamics. E is a
spatio-temporally evolving measure of the steep-
ness of the eigenvalue spectrum, λ1 ≥ λ2 . . . ≥
λr . . . ≥ λK , having smaller values for a steeper
spectrum (Szunyogh et al. 2007). For our choice
of the perturbations, where the K perturbations are
linearly dependent, λK = 0, the largest possible
value of E is K-1. For a set of linearly independent
ensemble perturbations, the maximum value of E
is equal to the number of ensemble perturbations,
K, which occurs when the uncertainty predicted by
the ensemble is evenly distributed between K linear
spatial patterns in Sℓ.

2.4. Spectrum of the d-ratio

While the explained variance diagnostic quanti-
fies the efficiency of the space Sℓ in capturing the
space of uncertainty in the state estimate, it does
not measure the performance of the ensemble in
distinguishing between the more and less impor-
tant directions within Sℓ. To introduce a diagnos-
tic that can measure the performance of the en-
semble in quantifying the importance of the differ-
ent state space directions within Sℓ, we first recall



that the eigenvalues λ1, λ2 . . . λK−1 measure the
relative importance of the eigen-directions uk, k =
1, . . . , K − 1, in a statistical sense. More precisely,
λk is the ensemble-based prediction of the variance
of the uncertainty in the k-th eigen-direction1. Our
goal is to verify this prediction.

Since the prediction of a variance is a probabilis-
tic prediction, it cannot be verified on a case by case
basis. Instead, the verification of such a prediction
requires a probabilistic verification score and a suf-
ficiently large sample of the prediction of the vari-
ance. Our choice for the probabilistic verification
score is the d-ratio, which was first introduced in Ott
et al. (2002). Since the d-ratio

dk =

√

(

δξk

)2

λk

, (15)

is defined independently for each eigen-direction, it
is more appropriate to talk about a spectrum of the
d-ratio. If the ensemble, on average, correctly pre-
dicts the uncertainty in the k-th direction, the mean
of dk over a large sample is one. If the ensemble
overestimates the uncertainty in the k-th direction,
the mean of dk is smaller than one, while a mean
value of dk larger than one indicates an underesti-
mation of the uncertainty in the k-th direction.

2.5. Linearity of the local dynamics

The forecast uncertainty can be guaranteed to be
normally distributed only if (i) the probability distri-
bution of the analysis uncertainty is normal and (ii)
the time evolution of the forecast uncertainty is lin-
ear. Since the nonlinear evolution of the forecast
uncertainty is typically the more important source of
deviations from a normal distribution, one may ex-
pect that Sℓ provides a better representation of the
uncertainties when nonlinearity plays a less impor-
tant role in the evolution of the forecast uncertainty.
(In section 4.4.4 we show that this expectation is
false.)

The period of time in which model dynamics can
be approximated as linear is commonly assumed
to be 2-3 days (Palmer et al. 1994). Gilmour et al.
(2001), using an objective measure to quantify the
importance of nonlinear effects on the dynamics
called relative nonlinearity, argued that the assump-
tion of linearity may not be valid for longer than
24 hours. To define the relative linearity measure,
Gilmour et al. (2001) considered the evolution of

1Graphically, the vectors
√

λkuk are the principal axes of the
ellipsoid defined by (x − x)T (P)−1(x − x) = 1. This ellipsoid
represents states of equal probability in Sℓ.

twin pairs of ensembles members, which were ob-
tained by adding the same ensemble perturbation
to the analysis with both a positive and a negative
sign. We introduce a measure of linearity that is
motivated by that of Gilmour et al. (2001).

The evolution of the k th ensemble member,
x

a,f(k)
g is governed by the equation

x
a,f(k)
g = F(x̄a

g + δxa(k)
g ) (16)

= F(x̄a
g) + Lδx

a(k)
g + N(x̄a

g , δx
a(k)
g ),

where L is a linear operator and N is a nonlin-
ear function of the analysis perturbation δx

a(k)
g . The

subscript g indicates that Equation (16) is for global
state vectors instead of the local state vectors we
consider elsewhere in this paper. [Equation (16) is
based on the Taylor expansion of the dynamics F

about x̄
a in the direction of the analysis perturba-

tion δxa(k). Also, when x
a,f(k) refers to an ensemble

member at analysis time, F and L are the identity
and N is zero.] Since

x
a,f
g = F(x̄a) (17)

and

x̄
a,f
g =

1

K

K
∑

k=1

x
a,f(k)
g , (18)

taking the ensemble mean of the two sides of Equa-
tion (16), we obtain

x̄
a,f
g = x

a,f
g +

1

K
L

K
∑

k=1

δxa(k)
g +

1

K

K
∑

k=1

N(xa
g , δxa(k)

g ).

(19)
Applying the global equivalent of Equation (5),the
second term on the rhs. of Equation (19) is zero.
Thus, introducing the notation

e =
1

K

K
∑

k=1

N(xa
g , δxa(k)

g ) (20)

for the ensemble mean of the nonlinearly evolv-
ing component of the forecast ensemble members,
Equation (19) yields

e = x̄
a,f
g − x

a,f
g . (21)

We define the local relative nonlinearity measure ρℓ

as the ratio between the magnitude of e and the en-
semble average of the magnitude of the ensemble
perturbations for the local state vectors; that is,

ρℓ =
‖x̄a,f − x

a,f‖
1
K

∑K

k=1 ‖δxa,f(k)‖
. (22)



(Notice that Equation (22)is based on local state
vectors.) One important difference between our
measure and that of Gilmour et al. (2001) is that
instead of a pair of perturbations, we consider a K -
member ensemble. We make this choice because
the K-member analysis ensemble generated by the
LETKF algorithm is not composed of pairs, but has
the property that the sum of the ensemble perturba-
tions is zero at analysis time. The other important
difference is that our definition is based on the local
state vectors instead of the global state vector.

3. EXPERIMENT DESIGN

We carry out numerical experiments both un-
der the perfect model scenario and in a realistic
NWP setting. In the perfect model experiments, we
generate simulated observations of the hypothetical
“true” trajectory of the atmospheric state, where the
time series of “true” states, z, is generated by a 60-
day model integration of the GFS model at T62L28
resolution starting from an operational NCEP anal-
ysis truncated to T62L28 resolution. We first re-
peat the experiment of KEA07 to verify that the find-
ings of that paper remain valid for the different time
period investigated here (January and February of
2004 instead of January and February of 2000).2

Then, we build to the realistic NWP setting in two
steps: first we replace the randomly located simu-
lated observations by simulated observations taken
by a realistic observing network, then we replace
the simulated observations with observations of the
real atmosphere.

3.1. Observational data sets

3.1.1. Randomly placed simulated observations

The “truth”, z, is taken to be an integration of
the GFS model starting from the operational NCEP
analysis at 0000 UTC 1 January 2004. At each
grid point and model level, we generate simulated
observations of the two horizontal components of
the wind, the temperature, and the surface pres-
sure by perturbing the “true” states with normally
distributed, zero mean assumed observational er-
rors with standard deviations of 1 K, 1.1 m/s, and
0.6 hPa for temperature, wind, and surface pres-
sure, respectively. Next, similar to Szunyogh et al.
(2005) and KEA07, we randomly choose 2000
soundings, to reflect a 10% observational coverage

2Another important difference between the experiment design
of the two studies is that we use a later version of the LETKF.
Most importantly, the LETKF used in this study provides more
accurate analyses in the polar regions.

of the model grid. By choosing observations ran-
domly, we ensure that the simulated observing net-
work has little systematic impact on the geographi-
cal distribution of analysis and forecast errors.

3.1.2. Simulated observations at realistic loca-
tions

In the second set of experiments, we assimi-
late simulated observations at the locations of rou-
tine non-radiance observations of the real atmo-
sphere. These simulated observations are gener-
ated by adding random observational noise, cre-
ated by using the standard deviation of the esti-
mated observational error provided with each ob-
servation by NCEP, to the “true” grid point values of
the surface pressure, the temperature, and the two
horizontal components of the wind vector. The lo-
cation and type of observations are obtained from
a database that includes all nonradiance observa-
tions operationally assimilated at NCEP between
000UTC 1 January 2004 and 000UTC 15 Febru-
ary 2004, with the exception of satellite radiances,
but including satellite derived winds. We also ex-
clude all surface observations, except for the sur-
face pressure and the scatterometer wind measure-
ments over oceans.

3.1.3. Observations of the real atmosphere

Finally, the observations of the real atmosphere,
which are used to obtain the type and location for
the simulated observations at realistic locations, are
assimilated.

3.2. Selection of the LETKF parameters

For each observational data set, an analysis
is obtained at the native model resolution every
6 hours. Diagnostics are computed at a reduced
2.5◦ × 2.5◦ grid resolution. We assimilate observa-
tions between 1 January 2004 0000 UTC and 15
February 2004 0000 UTC. In these experiments,
multiplicative covariance inflation is used at each
analysis step to increase the estimated analysis un-
certainty to compensate for the loss of ensemble
variance due to sampling errors, the effects of non-
linearities and model errors. The parameters of the
LETKF used in this experiment are the following:

• The ensemble has K = 40 members.

• Observations are considered in a 800 km hori-
zontal radius of the grid point, where the state
is estimated.



• Observations have equal weight within a
500 km radius of the given grid point, beyond
which the weight of the observations tapers lin-
early to zero at 800 km.

• Observations are considered in a vertical patch
radius centered at the grid point. This layer has
depth 0.35 scale height between model levels
1 to 15 and gradually increases to 2 at the top
of the model atmosphere.

• For simulated randomly distributed observa-
tions, we use a 10% covariance inflation at all
vertical levels in all geographic regions.

• For the simulated observations taken at real-
istic locations, the covariance inflation is 2.5%
at all vertical levels in the SH extratropics and
10% in the NH extratropics. In the Tropics, the
covariance inflation varies from 2.5% to 7.5%.

• For the conventional observations of the real
atmosphere, the covariance inflation tapers
from 25% at the surface to 20% at the top of
the model atmosphere in the SH extratropics
and from 50% to 30% in the NH extratropics,
and changes smoothly in the tropics (between
25◦S and 25◦N) from the values of the SH ex-
tratropics to the values of the NH extratropics.

• For all data sets, surface pressure is assimi-
lated at the first model level and temperature,
and zonal and meridional winds are assimi-
lated at all 28 model levels.

The variance inflation factors were determined by
numerical experimentation, searching for values
that minimized the analysis root-mean-square er-
rors.

3.3. Initialization

In the two sets of experiments which assimilate
observations in realistic locations, high-frequency
oscillations (typically associated with gravity waves)
are filtered from all background ensemble members
with a digital filter scheme (Huang and Lynch 1993),
which is part of the NCEP GFS model and can be
turned on or off by choice. (Unlike in the original
formulation of the digital filter algorithm, where a fil-
tered analysis is produced, the NCEP filter provides
only a filtered background field.) We use the filter
with a 3 hr cutoff frequency. We find that turning
the digital filter on in these two sets of experiments
leads to a major improvement of the analyses.

In the experiments with randomly placed obser-
vations, turning the digital filter on degrades the

analysis in the Tropics (Figure 1). More precisely,
the surface pressure errors with the digital filter
turned on (top panel of Figure 1) have a clear
wavenumber two pattern in the tropics. A more
careful examination of the structure of the error
fields reveals that the digital filter wipes out the
semidiurnal tidal wave 3. We illustrate this effect
of the filter by showing the spectrum of Fourier am-
plitudes of the time series of surface pressure at
the location 0◦N, 160◦W for the nature run and the
analyses prepared with and without the use of the
digital filter (Figure 2). The 12-hour frequency os-
cillation characteristic of the semidiurnal tidal wave
is not present in the run that uses the digital filter,
even though this oscillation is the dominant signal
in the nature run and in the analysis cycles that
do not use the digital filter. (We note that the dig-
ital filter initialization also has a negative effect on
the analysis of the semidiurnal tidal wave in the two
experiments that assimilate observations at realis-
tic locations, but the problem does not get exposed
in those experiments because the beneficial effect
of the filter from removing spurious gravity waves
masks the degradation from wiping out the semidi-
urnal tidal wave.)

The semidiurnal tidal wave is primarily caused by
the absorption of solar radiation by ozone in the
stratosphere and the atmosphere. The response to
this stratospheric excitation propagates downward
in the form of an inertia-gravity wave (Chapman and
Lindzen 1970). Our conjecture is that the digital fil-
ter affects this inertia-gravity wave. We also suspect
that applying a digital filter initialization to the anal-
ysis increment instead of filtering the six-hour back-
ground forecast, which is the general practice for
variational data assimilation schemes, would elim-
inate the negative effect of the filter on the semi-
diurnal tidal wave 4.

3.4. Forecasts

We prepare the deterministic forecasts daily,
started from the mean analysis at 0000UTC and
1200UTC, and output every 12 hours. These model
integrations provide the state estimate x

a,f . At
analysis time and at short forecast lead times (while
the time evolution of the ensemble perturbations
stays linear), this state estimate provides our best
deterministic estimate of the state. At longer lead

3The possibility that the error field in the top panel of Figure 1
may be associated with the semidiurnal tidal wave signal was
first pointed out to us by Nedjeljka Zagar of the University of
Ljubljana.

4We are currently in the process of developing such an initial-
ization algorithm for the LETKF scheme.



times x
a,f simply represents a forecast for which

the analysis was drawn from a probability distribu-
tion that is consistent with our estimate of the anal-
ysis uncertainty.

In addition to the state estimate, the LETKF also
generates an ensemble of analyses to estimate the
uncertainty in the state estimate. These analyses
serve as initial conditions for the ensemble of fore-
casts. Ensemble forecasts are obtained once daily,
started from the ensemble of analyses, at 0000UTC
and output every 12 hours. Both the determinis-
tic forecast and the ensemble forecasts are car-
ried out to a five day lead time. Unlike the exper-
iments which use realistically placed observations,
forecasts for the experiment that assimilates obser-
vations in random locations are run without the use
of the digital filter. We note that turning the digi-
tal filter off in this experiment slightly increases the
forecast error up to 12-hour lead times, after which
the filter has no effect on the forecast errors.

Forecast error statistics are computed by com-
paring the deterministic forecasts, xa,f , to the “true”
states, z. Forecasts started from analyses gener-
ated by assimilating conventional observations of
the real atmosphere are verified using the high
(T254L64) resolution operational NCEP analyses
truncated to 2.5◦ x 2.5◦ resolution as proxy for the
“true” state. (The local state vectors are defined
on the 2.5◦ x 2.5◦ grid and not on the nominally
higher resolution native computational grid of the
model.) These operational analyses were obtained
by NCEP assimilating a large number of satellite ra-
diance observations in addition to the conventional
observations used in our experiments. Forecast er-
ror statistics are generated for the 36-day period,
0000 UTC 11 January 2004 - 0000 UTC 15 Febru-
ary 2004.

To calculate the E-dimension, we follow the ap-
proach of Oczkowski et al. (2005) and KEA07: we
transform the ensemble perturbations such that the
square of the Euclidean norm of the transformed
perturbations has dimension of energy. For this cal-
culation, the local volume is defined, as in KEA07,
by all temperature, wind, and surface pressure grid
point variables in a cube that is defined by 5x5 hori-
zontal grid points (at 2.5◦ x 2.5◦ grid resolution) and
the entire column of the model atmosphere. For this
definition of local region, the dimension of the local
state vector, N , is 1975. (Since K=40, K<N, as we
assumed in Section 2.)

4. NUMERICAL EXPERIMENTS

4.1. Forecast Errors

First, to illustrate the general spatial distribution of
the errors in the x

a,f
g state estimate we examine the

absolute error in the analyses and forecasts of the
meridional wind component at 500 hPa. We choose
the meridional wind instead of the more commonly
used geopotential height, because this way we can
use the same quantity to characterize the errors in
the Tropics and the extratropics. Plots of the ab-
solute error are obtained by computing the time
average of ‖ξ‖ at each location (grid point). Fig-
ure 3 shows the time mean absolute error at analy-
sis time and at the 72-hour forecast lead time for all
three experiments. The results obtained by assimi-
lating simulated observations in randomly placed lo-
cations show that the largest analysis errors are in
the Tropics and the smallest analysis errors are in
mid-latitude storm track regions, in agreement with
Szunyogh et al. (2005). Forecast errors become
dominant in the storm track regions within 48-72
hours. In comparison, when simulated observations
are placed in realistic locations, the results show
that the distribution of the magnitude of the anal-
ysis errors is strongly modulated by the observation
density: the lowest errors are over continents in the
Northern Hemisphere, and the highest errors are
over Antarctica and in the oceanic region between
Cape Horn and the Antarctic Peninsula.

We see strong similarities in the spatial distribu-
tion of the errors at analysis time and for short term
forecasts in both experiments that assimilate ob-
servations in realistic locations. This similarity in-
dicates that observation density plays a more dom-
inant role than model error in determining the large
scale spatial variation of the analysis and the short
term forecast errors. Nevertheless, the results ob-
tained by assimilating observations of the real at-
mosphere show that the magnitude of the forecast
error is almost double the forecast error found in the
experiments which used simulated observations. In
all three experiments, we find rapid growth of fore-
cast errors in the mid-latitude storm track regions,
which become the dominant region of forecast error
by the 72-hour lead time.

4.2. E-Dimension, Explained Variance, and
Forecast Error

Szunyogh et al. (2005) showed that for lower
values of E-dimension, the ensemble more cer-
tainly captured the structure of the background er-
ror. KEA07 extended the E-dimension diagnostic



to study predictability of the performance of ensem-
ble forecasts and found that, in the extratropics, at-
mospheric instabilities5 that led to fast local error
growth also led to low E-dimension and, therefore,
to increased certainty that a greater portion of the
forecast error was efficiently captured by the en-
semble.

We investigate the relationship between the E-
dimension, explained variance, and forecast errors
with the help of joint probability distribution func-
tions (JPDFs). The JPDF shown in Figure 4 is ob-
tained by calculating the number of occurrences in
each bin defined by ∆E × ∆EV , where ∆E de-
notes the bin increment for E-dimension and ∆EV

denotes the bin increment for the explained vari-
ance. The number of occurrences is then normal-
ized by ∆E × ∆EV × n, where n is the total sam-
ple size, which is equal to the total number of grid
points in a geographic region multiplied by the to-
tal number of verification times. This normaliza-
tion ensures that the integral of the plotted values
over all bins is equal to one. At analysis time, we
find lower values of E-dimension corresponding to
higher values of explained variance for the exper-
iments which use realistically placed observations
(two lower left panels of Figure 4) than for the ex-
periment that uses randomly placed simulated ob-
servations. As forecast lead time increases, lower
values of E-dimension have a greater probability of
corresponding to high value of explained variance.
In good agreement with KEA07, we find that at the
120-hour lead time (right panels of Figure 4), the
lower the E-dimension, the greater the probability
that explained variance is high. We find this rela-
tionship independent of experiment and geographic
region.

A unique feature of the results for the experiments
which use real observations (bottom two panels of
Figure 4) is that the largest value of explained vari-
ance is about 0.9 instead of the theoretical maxi-
mum of one. This reduced maximum is most likely
due to the effects of the model errors, as we can-
not observe such reduction of the maximum in the
two experiments that use simulated observations.
We cannot determine, however, based on the re-
sults of our experiments, whether this reduction in
the maximum of the explained variance occurs be-
cause some of the forecast errors are orthogonal
to the model attractor, thus an ensemble of model
forecasts cannot capture them, or because a flaw in
the generation of ensemble perturbations does not

5Here we use the term ”instability” in the mathematical sense,
that is, it refers to the divergence of nearby model trajectories in
state space

allow the members of the forecast ensemble to ex-
plore that part of the model attractor that includes
the true system state.

Figure 5 shows the JPDF for the explained vari-
ance and the state estimation error in the NH ex-
tratropics. As in KEA07, the ensemble captures
the patterns associated with larger forecast errors
more efficiently. In addition, both the minimum and
the maximum of explained variance increase with
forecast time in all three experiments, which indi-
cates that Sℓ provides an increasingly better repre-
sentation of the space of forecast uncertainty with
increasing forecast time.

Figure 6 shows the mean E-dimension for the
bins in the JPDF for forecast error and explained
variance. The findings of KEA07 extend to the more
realistic settings: larger forecast errors lead to an on
average lower E-dimension, and therefore to higher
explained variance. Interestingly, the distribution
of E-dimension with explained variance at analysis
time is more similar for the two experiments which
assimilate realistically distributed observations. For
these two experiments, we find locations where the
explained variance is high and the E-dimension is
low, but the analysis error is relatively large. These
are locations where the ensemble efficiently cap-
tures the space of uncertainties, but there are no
observations available to take advantage of this in-
formation. Such locations do not exist for the ex-
periment that assimilates randomly placed observa-
tions, as in that experiment the observational cover-
age is sufficiently dense at all locations to effectively
remove the background errors at locations of high
explained variance (low E-dimension).

Figure 7 shows the evolution of the mean of the
NH average of the sum of the squared forecast er-
ror, ERV = ‖ξi‖2, the sum of the squared forecast
error in Sℓ, ERVS =

∑K

i=1 ξ
(‖)2
i , and the total en-

semble variance VS =
∑K

i=1 λi. (We also show the
curve 2VS .) Since the initial condition of x

a,f is de-
fined by the ensemble mean, for a perfect ensem-
ble, the value of ERV and ERVS would be equal to
VS at initial time, and would drift toward 2VS with in-
creasing forecast time. [This is because the asymp-
totic value of ERV , which is reached at the forecast
time where predictability is completely lost, is twice
the variance of the error in the climatological fore-
cast, while the asymptotic value of VS is equal to the
variance of the error of the climatological forecast,
e.g., Leith (1974) and Szunyogh and Toth (2002).]
We show results only for the experiment that assim-
ilates simulated observations at realistic locations.
For this experiment ERVS is in good agreement
with VS at short lead times. In this case, further



inflating the variance to make VS = ERV would not
lead to improved analyses and forecasts because
part of ERV is due to errors that lie in directions
orthogonal to the space spanned by ensemble per-
turbations, ξ(⊥) 6= 0. For increasing forecast time,
ERVS drifts toward the 2VS curve and crosses it
at about the 84-hr forecast time. This suggests
that the ensemble spread (defined by VS) under-
estimates the forecast error because ERVS should
become equal at the time where ERVS does not
grow anymore. (This time is obviously not reached
in Figure 7.)

4.3. Spectrum of the d-ratio

So far we have shown that Sℓ provides an increas-
ingly more efficient representation of the space of
forecast uncertainty with increasing forecast time
(Figure 5 and 6.) We have also shown that Sℓ is
more certain to capture a larger portion of the fore-
cast error where the error in the deterministic fore-
cast is larger. Now we turn our attention to investi-
gating the efficiency of the ensemble in distinguish-
ing between the importance of the eigen directions
(error patterns in physical space) in Sℓ.

We first compute the spectrum of d-ratio dk us-
ing the same definition of the local volume as in
our calculations of E-dimension and explained vari-
ance. Typically, the ensemble underestimates the
error in the forecast in all directions it captures (Fig-
ure 8). The exceptions to this underestimation are
the first few directions, that explain a larger portion
of ensemble variance, at short lead times (in agree-
ment with Figure 7). The underestimation is typi-
cally smaller in directions that explain a larger por-
tion of the ensemble variance.

In order to obtain d-ratio figures whose meteoro-
logical (physical) meaning is easier to interpret, we
change the definition of the local volume: we inves-
tigate a single variable at a single level using 5 by
5 horizontal grid points. In these calculations N=25
(N < K), hence, the upper bound for the dimen-
sion of Sℓ is 25. The variable and levels we choose
for this analysis are the surface pressure, the tem-
perature at 850 hPa, the two horizontal wind com-
ponents at 500 hPa, and the geopotential height at
500 hPa. Figure 9 shows the time mean of this ra-
tio in the leading direction, d1, for the temperature
at 850 hPa. This figure shows that initially (at 12 hr
lead time) d1 tends to be higher in regions of high
observation density, such as Europe, Japan, and
the western half of United States, than in regions of
lower observational density, such as the Southern
Hemisphere and the oceanic regions. This result is

an indication that our zonally constant covariance
inflation strategy in the LETKF cannot be optimal
when there are zonal changes in the observation
density. Thus we conjecture that implementing a
spatially varying adaptive covariance inflation tech-
nique, such as described in Anderson (2007) or a
localized version of Li et al. (2009), would lead to
an improvement of the analyses and the short term
ensemble forecasts. The time averaged spectrum
of the d-ratio for a particular grid point (Figure 10)
over the ocean, at the 12-hour lead time shows that
the ensemble, on average, underestimates the un-
certainty in all directions in Sℓ, most severely for di-
rections that explain a smaller portion of the vari-
ance. For the same grid point at the 5-day lead
time, the underestimation is less severe, especially
for the leading directions.

4.4. Local linearity

The local variability of the degree of linearity in
the evolution of uncertainty is illustrated by com-
paring the the time-mean of the globally averaged
values of relative nonlinearity computed for the lo-
cal regions and the entire model atmosphere. This
comparison is shown in figure 11 for each fore-
cast lead time. The unexpected non-zero values
of the relative nonlinearity at analysis time are due
to small (≈ 0.025) differences between the anal-
ysis and the ensemble mean caused by errors
due to truncation and transformation of the origi-
nal analysis from the native model grid to the trun-
cated equidistant model grid used in the diagnos-
tics. While the globally averaged values of rela-
tive nonlinearity computed with and without local-
ization are similar, the standard deviations of the
values computed using localization show a strong
local variability in the degree of linearity. For in-
stance, values of the relative nonlinearity as low as
the mean at 72 hours lead time are within one stan-
dard deviation at 120-hours. Conversely, values as
high as the mean at 108 hours are within one stan-
dard deviation at 72-hour forecast lead time.

5. CONCLUSIONS

In this paper, we studied the spatio-temporally
changing nature of predictability in a reduced res-
olution version of the model component of the Na-
tional Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS), a state-of-the-art
numerical weather prediction model, using the
LETKF data assimilation scheme. Our conclu-
sions fall into two categories: conclusions that we
believe to identify inherent properties of the local



predictability of the performance of an ensemble
forecast system and conclusions that point to the
suboptimality of our current implementation of the
LETKF analysis scheme.

• We find that observational density has a
greater impact on the spatial distribution of
analysis and forecast error than does model er-
ror. Including the impact of model error has
a greater influence on the magnitude of error
than the structure of error.

• Independent of experiment, lead time, and ge-
ographic region, the lower the E-dimension, the
more likely the explained variance is high. Fur-
ther, as forecast lead time increases, smaller
values of E-dimension more certainly predict
high explained variance.

• In the extratropics, the ensemble does a better
job of capturing forecast error when forecast er-
ror is high. This behavior can be explained by
the fact that high forecast error leads to low E-
dimension. We find this result to hold for both
perfect model and the real atmosphere.

• Realistic observation coverage, when only con-
ventional (non-radiance) observations are con-
sidered, is not adequate to remove errors cor-
rectly identified by the ensemble at analysis
time in the extratropics, leading to the presence
of regions of high explained variance and low
E-dimension at analysis time.

• Conclusions related to the suboptimality of our
implementation of the LETKF:

– At analysis time, we find that the ensem-
ble typically underestimates uncertainty
more severely in regions of high observa-
tion density than for regions of low obser-
vation density. This result indicates that
implementing a spatially varying adaptive
covariance inflation technique may im-
prove analyses.

– We find that the variance inflation coeffi-
cient used in the current implementation
of the LETKF on the NCEP GFS (Szun-
yogh et al. 2008) may be smaller than opti-
mal in the NH extratropics. We conjecture
that even if a spatially varying adaptive co-
variance inflation technique is not imple-
mented, further tuning of the current co-
efficients of the variance inflation scheme
may lead to major improvements of the
analysis in the NH extratropics.
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(a)

(b)

Figure 1: The time mean absolute error of the surface pressure for simulated observations at random locations for
analyses generated with digital filter initialization (top) and without digital filter initialization (bottom). The average is
taken over all analyses between 01 January 2004 0000UTC and 29 February 2004 1800UTC



Figure 2: Fourier analysis of the surface pressure analyses at the location 0◦S, 160◦W between 14 January 2004
0600UTC and 15 February 2004 0000UTC shown for simulated observations at random locations without digital filter
initialization (blue curve), with digital filter initialization (red curve), and for the nature run (green curve)
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Figure 3: Time-mean absolute analysis/forecast error of the meridional wind component at the 500 hPa pressure
level. Results are shown for the analysis (left) and the 72-hour forecast (right) for experiments that assimilate randomly
distributed simulated observations (top panel), simulated observations at the locations of conventional observations
(middle panel), and conventional observations of the real atmosphere (bottom panel). The average is taken over all
forecasts started between 11 January 2004 0000UTC and 15 February 2004 0000UTC. Note the different scale for the
forecast errors in the bottom panels.
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Figure 4: Joint probability distribution of the E-dimension and the explained variance in the NH extratropics. The
bin increments are 0.005 for the explained variance and 0.2 for the E-dimension. Shown are the distributions for the
analysis (left) and the 5-day forecast lead time (right) for experiments that assimilate randomly distributed simulated
observations (top panel), simulated observations at the locations of conventional observations (middle panel), and
conventional observations of the real atmosphere (bottom panel).
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Figure 5: Joint probability distribution of the analysis/forecast errors and the explained variance. The bin increments
are 0.005 for the explained variance and 0.4 for the forecast error. Shown are the distributions for experiments that
assimilate randomly distributed simulated observations (top panel), simulated observations at the locations of conven-
tional observations (middle panel), and conventional observations of the real atmosphere (bottom panel). Note the
different scale for the forecast errors in the bottom panel.
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Figure 6: Color shades indicate the mean E-dimension for each nonempty bin in Figure 5. Shown are the distributions
for experiments that assimilate randomly distributed simulated observations (top panel), simulated observations at the
locations of conventional observations (middle panel), and conventional observations of the real atmosphere (bottom
panel). Note the different scale for the forecast errors in the bottom panel.
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Figure 7: The mean of the Northern Hemisphere average of ERV (red), ERVS (green), VS (blue), and 2VS (black)
calculated for all assimilated variables in the local regions with energy rescaling. Results are shown for each forecast
lead time and the average is taken over all forecasts started between 11 January 2004 0000UTC and 15 February 2004
0000UTC.
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Figure 8: The time mean of the Northern Hemisphere average spectrum of the ratio di, calculated for all assimilated
variables in the local regions with energy rescaling. Results are shown for 12-hour lead time (top) and the 5-day lead
time (bottom) for experiments that assimilate simulated observations at the location of conventional observations. The
average is taken over all forecasts started between 11 January 2004 0000UTC and 15 February 2004 0000UTC.
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Figure 9: The time average of the ratio di in the leading direction for the temperature at 850 hPa. Results are shown
for the 12-hour forecast (top) and the 5-day forecast (bottom) for experiments that assimilate simulated observations at
the locations of conventional observations. The average is taken over all forecasts started between 11 January 2004
0000UTC and 15 February 2004 0000UTC. Note the different scale for the d-ratio for the 5-day lead time.
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Figure 10: The spectrum of the ratio di at the point 60◦N 120◦W for the temperature at 850 hPa. Results are shown
for the 12-hour forecast (top) and the 5-day forecast (bottom) for experiments that assimilate simulated observations at
the locations of conventional observations. The average is taken over all forecasts started between 11 January 2004
0000UTC and 15 February 2004 0000UTC.



(a)

Figure 11: Time-mean of the globally averaged relative nonlinearity at each forecast lead time. Results are shown for
experiments that assimilate simulated observations at the locations of conventional observations. The solid line shows
the results obtained when the relative nonlinearity is first calculated for local regions consisting of 5x5 model grid points
and then the results are averaged over all local regions. The associated standard deviation is also shown. The dashed
line shows the nonlinearity index computed for the global state vector.


