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1.  INTRODUCTION 

In conducting hazard assessments, data from the 
nearest NWS Automated Surface Observing System 
weather station are conventionally used as input for 
dispersion modeling, but these data are generally 
distant from the location of interest, and provide little 
information on turbulence.   Figure 1 illustrates some 
of the difficulties that arise.  Wind roses generated 
from data collected using micrometeorological towers 
erected on rooftops of central Washington, DC, are 
quite different from that derived from the nearest 
station of the National Weather Service, at 
Washington Reagan National Airport. 

 

Figure 1.  Wind roses derived from three 
months of hourly data collected at the National 
Weather Service site at Washington Reagan 
National Airport and at three DCNet sites in 
downtown Washington, DC.  Data are sorted 
into wind speed classes, extending out to a 
maximum of 10 m/s (0 – 1; 1 – 3; 3 – 5; 5 – 7; 
7 – 10; starting at the origin).   

 
The focus of the present work is to build upon 
comparisons between data from a commercial 
surface network (that of AWS Convergence 
Technologies, Inc.) and a NOAA urban research 
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network to show how such commercial surface 
network data might be used to augment standard 
dispersion modeling.  The AWS “Weatherbug” 
network uses mechanical anemometers with starting 
speeds of about 1 m/s, typically deployed on 3 m 
masts attached at the edges of the roofs of buildings.  
Research (DCNet) network data are obtained using 
sonic anemometers mounted 10 m above the roofs of 
buildings “of convenience,” predominately  in the 
metropolitan area of Washington DC  with two 
additional stations in New York City.  The DCNet 
installations are sited to minimize the consequences 
of edge effects and local obstructions.    

Hicks et al., (2008) have shown that the aggregated 
data from surface stations surrounding a central 
rooftop tower are highly correlated with the tower 
observations.  Two potential applications then arise:  
a) concerning the use of such surface data to predict 
dispersion within the urban roughness layer, and b) 
using these same surface data to forecast dispersion 
across the urban area in question, above the 
roughness layer.  These applications will be 
addressed here in two different ways.  First, methods 
for extracting the familiar dispersion model inputs 
from surface network data will be explored.  Second, 
“amplification factors” by which conventional models  
might be adjusted to account for the effects of 
enhanced urban roughness will be developed. 
 
Figure 2 shows the stations used in the present 
analysis, for both Washington DC and New York City 
(where two additional DCNet stations are located). 

 
 

Figure 2.  The locations of DCNet and AWS 
surface sites in the Washington, DC, area (left) 
and in New York City (right). 

 



2.  FORECASTING DISPERSION FOR THE 
SURFACE BOUNDARY LAYER 
 
Puffs of pollutants respond to instantaneous 
variations in the local wind.  Such variations are 
usually considered as elements of the relevant 
statistical distributions – σ(u) and σ(θ) (or σ(U) and 
σ(V)) – used to initialize a conventional dispersion 
model.  Here, u is the wind speed, U and V are the 
east-west and north-south components respectively, 
and θ is the wind direction.  Later, φ will be introduced 
as the vertical plume dimension.  The challenge is to 
derive relevant dispersion statistics for the surface 
roughness sublayer in which people are exposed.  
The main quantities of interest are: 
 
For each site of the local subnetwork – 
 
u and θ:  The average wind speed and direction 
derived over a 15 minute period (or whatever other 
averaging period might be convenient, in the range 15 
to 60 minutes so as to capture all of the turbulent 
covariance while not strongly violating the desire for 
stationarity).   
 
σ(u) and σ(θ):  The standard deviations of the wind 
speed and wind direction. 
 
U and V:  The average east-west and north-south 
velocity components derived from wind speed and 
direction data reported from the same site.   
 
σ(U) and σ(V):  The corresponding standard 
deviations of the velocity components. 
 
For the subnetwork aggregations from N stations – 
 
U and V:  The subnetwork averages of the U and V.  
U = (∑U)/N, and similarly for V. 
 
σ(U) and σ(V):  The standard deviations associated 
with the U and V values. 
 
σ(U) and σ(V):  The averages of the N values of σ(U) 
and σ(V).  
 
From this set of variables, the goal is to derive the  
input variables common in plume/puff modeling – the 
plume transport variables u and θ, and the diffusion 
factors σ(u), σ(θ) and σ(φ). 
 
3.  DERIVING u, θ, σ(u) & σ(θ) FROM VELOCITY 
COMPONENT STATISTICS. 
 
Wind Speed.  The wind speed (u) to be used in 
dispersion computations can be derived from (a) a 
nearby ASOS station, (b) synoptic-scale weather 
predictions, (c) local meso-scale models, (d) 
specialized installations like DCNet, or (e) surface 
network data such as are considered here.  Of these 
choices, the first two appear susceptible to 
considerable error.  The third appears a reasonable 

source of wind speed information at the level of 
skimming flow, from which surface wind speeds can 
be estimated as about 30% to 40% of the predicted 
skimming flow speed (Hicks et al., 2008).  Figure 3 
illustrates the relationship between network averaged 
wind speed and that observed by the central DCNet 
tower.  The overall agreement is not particularly 
pleasing, If actual observations are available in real 
time, then clearly (d) could prove preferable, yielding 
surface wind speeds typically 30% to 40% of the 
rooftop mast measurement.  However, if the intent is 
to address dispersion within and through the urban 
roughness layer, reliance on surface wind 
measurements would appear preferable, provided 
that these are aggregated to obtain a best estimate.  
There is a basic guidance principle that appears 
relevant – To forecast well, minimize the stretch (in 
both space and time) from available data.  Real-time 
local data are the best on which to rely, provided they 
are used appropriately. 
 

 
 

Figure 3.  The relationships between AWS-
station and DCNet tower wind speeds, for two 
weeks of October 2006 and for four sites of the 
DCNet program.  The vertical axis plots 
surface average vector speeds, derived by 
averaging the velocity components reported by 
network anemometers over each 15-minute 
run, and then combining the average velocity 
components to derive the average network 
speed.   

 
Wind direction.  Although there is limited correlation 
between the wind speeds aloft and those within the 
surface roughness sublayer, the wind directions 
appear to be consistent.  This is illustrated in Figure 4.  
The network average wind direction data are derived 
from the average velocity components U and V.  As 
must be expected, low-wind-speed performance 
limitations of the surface network anemometers 
impose considerable scatter, and consequently Figure 
4 addresses only those cases for which the average 
surface network wind speed exceeded 1 m/s.   

 
It is concluded that the subnetwork vector mean wind 
direction is well connected to the wind direction aloft 
for urban areas with low aspect ratios (i.e. Fr < 0.5,  



see Baik et al., 2000), and that in such situations 
either of these would provide a good basis for 
estimating the direction of drift of puffs dispersing in 
the surface sublayer.  The matter of the influence of 
street canyon aspect ratio on wind direction 
“rectification” remains to be explored.  
 

Table 1 
 

Relationships between the average vector 
speed derived from the surface network within 
5 km of the central DCNet site and the DCNet 
speed.  The relationship tested is of the form Y 
= a + b.x, or Y = B.x, where Y is the surface 
average vector speed, and x is the central 
DCNet speed.  R is the correlation coefficient. 

__________________________________________   
 
                    All Winds                        Wind > 1 m/s
 
   R         b        B           R         b         B 
__________________________________________ 
 
Washington, DC 
 
DOC 0.76    0.31    0.36      0.63    0.24    0.40 
NAS 0.80    0.36    0.42      0.67    0.23    0.48 
NAX 0.82    0.18    0.18      0.66    0.13    0.20 
NRL 0.87    0.29    0.28      0.85    0.29    0.24 
SSG 0.75    0.25    0.18      0.84    0.23    0.27 
 
New York City, NY 
 
EML 0.71    0.31    0.38      0.66    0.29    0.40 
TSQ     0.51    0.16    0.41      0.54    0.16    0.39 
__________________________________________ 
 
 
 

 
 

Figure 4.   As in Figure 3, but comparing 
average wind directions on a 15-minute vector-
resolved basis.  To avoid light wind sensor 
limitations, data are confined to average 
network wind speeds above 1 m/s.  Note the  
evidence of street canyon “rectification” of the 
wind field for the New York City data, 
especially for the TSQ observations.     

 

Wind Speed Standard Deviation.   The focus so far 
has been on combining the data from separate 
origins, using the orthogonal velocity components U 
and V.  Continuing in this mode, it is of relevance to 
consider how σ(u) relates to σ(U) and σ(V).   Deriving 
σ(u) from quantifications of σ(U) and σ(V) given by a 
single anemometer requires estimation of the 
covariance between the U and V components, 
normally accomplished by coordinate rotation.   The 
validity of the extension of this to a network is not 
obvious.  Certainly, the vector speed standard 
deviation defined by  

 
     σ(speed) = √(σ(U)2 + σ(V)2)  (1) 
 
provides an approximation.  Figure 5 illustrates the 
relationship between σ(speed) as defined above and 
the value σ(u) obtained by formal coordinate rotation, 
for 15 minute groupings of 10 Hz observations from 
the four DCNet sites.  These plots use a complete 
year of data from each site.  In all cases, the slopes 
are exceedingly close to unity, with individual values 
as shown, so that a proportionality between σ(speed) 
and σ(u) is supported on the average.  The average 
slope (i.e. the power law exponent) derived from all of 
the sites is 1.02 +/- 0.01, so that the expected linear 
relationship is clearly supported by the data.  The 
constant of proportionality based on all sites listed in 
Table 1 is 0.74 (+/- 0.01).  The overall correlation 
coefficient is 0.97.  As elsewhere in the present 
treatment, it is tacitly assumed that the constant of 
proportionality (0.74) also applies to the aggregation 
of wind components across a local network.  This is 
certainly debatable, since the covariances of the 
contributing north-south and east-west components 
across the subnetwork need to be considered, and 
those are not readily derived from the present data.  

 
 

Figure 5.  The relationships between two 
different measures of the longitudinal wind 
speed standard deviation – σ(u) as derived by 
full coordinate rotation of velocity components 
from three-dimensional anemometers, and the 
approximation σ(speed) derived as in Equation 
1.  In all cases, the (power law) regression 
lines indicate that proportionality is a good 
approximation.   

 



Wind Direction Standard Deviation, σ(θ).  There is 
need to derive appropriate values of σ(θ) from values 
of the average velocity components and standard 
deviations.   Turner (1986) reviews three alternative 
methods, but all require the acquisition of statistical 
quantities not easily obtained for the surface network 
considered here.  Given that for the present network 
application it is preferred to make use of the 
orthogonal velocity components, Equation 2 appears 
to provide an appropriately straightforward (although 
imprecise) answer: 
 
     σ(θ) ~ Artan[(σ(U) + σ(V))/(2(U2 + V2))½] (2) 
 
This can be tested with DCNet data, since the 
instrumentation and data acquisition systems of the 
DCNet program permit turbulence quantities to be 
recorded in several different ways.  In particular, time 
averages of the wind speed and σ(θ) are computed 
directly and recorded every fifteen minutes.  In 
parallel, the wind vector component averages and 
standard deviations are computed and recorded – U 
and V, and σ(U) and σ(V).  Figure 6 compares 
predictions made using Equation 2 with direct 
measurements of σ(θ), for the four sites considered 
here – DOC, SSG, EML and TSQ.  The similarities 
among the diagrams of Figure 6 are striking, with the 
overall conclusion that the simple relationship (2) 
yields estimates of σ(θ) about 10% below the direct 
measurements, except for very high values (above 
about 70 degrees).   

 
Figure 6.  Tests of Equation (2), for extracting 
σ(θ) values from aggregated velocity 
component data.  DCNet data are used.  
Results obtained using Equation (2) are 
plotted against actual direct measurements of 
σ(θ) derived from sonic anemometry.   Linear 
egression lines are shown, with correlation 
coefficients R and slopes b. 

 
Diffusion in the Vertical, σ(φ).   Within the data sets 
provided by surface networks, there appear to be no 
direct measurements that would lead to immediate 
quantification of σ(φ).   In practice, the role of street 
canyons will be a key consideration.  However, Figure 
7 provides a possible opportunity – inspection of the 
diagram reveals that the relationship between σ(w) 

and σ(v) is much the same for all of the sites: σ(w) ≈ 
0.65σ(v).   Using this result as a starting point, it is 
apparent that a first estimate of σ(φ) can be obtained 
by applying this same constant of proportionality, so 
that σ(φ) ≈ 0.65σ(θ). 
 

 
Figure 7.  Using coordinate-rotated DCNet 
sonic anemometer data alone, sample plots of 
the vertical wind component standard 
deviation against the transverse.  The 
identifiers n, e, w, and s indicate the winbd 
directions from which the data are selected – 
north, east, etc.  Slopes are given as “b.” 

 
4.  APPLYING THE RESULTS. 
 
There are two obvious ways in which surface network 
data might be used in modified plume dispersion 
models:  (a) by applying “amplification factors” to the 
results of conventional models that are driven by 
descriptions of u, θ, σ(u) and σ(θ) based on some 
methodology developed for application in simpler 
circumstances (e.g. the Pasquill-Gifford categorization 
approach), or (b) by employing a dispersion code that 
makes use of observed values of the average wind 
and its turbulence (i.e. u, θ, σ(u), σ(θ) and σ(φ)).  In 
both cases, a first step is to aggregate wind vector 
components provided by the anemometers in a 
subnetwork within some specified radius of the 
location of principal interest -- the release point of 
some trace gas for example.   
 
Dispersion amplification factors.  Figure 8 presents 
plots of two ratios of potential utility in adapting 
standard models to an urban environment like that 
studied here.  The first is the ratio (F1) of (a) the value 
of σ(θ) derived from the averages U, V, and the 
corresponding standard deviations using Equation (1), 
to (b) the value of σ(θ) derived similarly from the U 
and V component statistics from the central DCNet 
tower.  The intent is to quantify a factor that could be 
used to address a suburban setting if skimming-flow 
or near-surface tower data are all that are available.  
The second is the ratio (F2) of the σ(θ) value derived 
from the mean wind vectors reported by the 
independent surface stations to the σ(θ) value derived 
from the averages of the standard deviations (in time)  



 
Figure 8.  Two characterizations of the 
behavior of σ(θ) at the surface.  At the top are 
ratios of σ(θ) derived from the surface array 
surrounding the DOC central DCNet site to the 
value of σ(θ) derived from the average U and 
V components measured by the DCNet 
instrumentation.  Below are values of the 
space to time ratios for σ(θ), based on the 
surface array alone.  The diagrams at the right 
are constrained to surface average wind 
speeds above 1 m/s. 

 
reported by the same stations. F2 is the ratio 
space/time of the surface σ(θ) field.  Figure 8 is for 
the DOC location.  Figure 9 is the corresponding 
diagram for New York City.  All other sites yield 
similar behavior, with the evidence of light-wind 
sensor limitations being strongly evident for the 
nighttime hours, and with the data being more orderly 
when cases with average wind speeds below 1 m/s 
are excluded.  In many of the cases there is some 
residual evidence of a diurnal cycle, but the amplitude 
is small enough that it is disregarded at this time.     

 

 
 
Figure 9.  An extension into New York City, for 
two DCNet sites and the surface subnetwork 
surrounding them (within 5 km) – EML near 
the Houston Street subway station and TSQ 
near Times Square.  Only cases with average 
surface wind speeds exceeding 1 m/s are 
used in the analysis. 
 
 

Table 2 lists the values of the factors F1 and F2 
characterizing a number of subnetworks, including the 
New York City cases.   The values of F1 vary 
considerably, especially for the all-winds case.  This 
variability is reduced substantially when the data are 
constrained to speeds above 1 m/s.  There is no basis 
for expecting the F1 values listed for the higher-speed 
cases to be different for light winds, but there is also 
no way in which this can be tested using the present 
data set.  It should also be noted that the values of F1 
are universally greater than unity, implying that the 
turbulence levels detected by the surface network are 
greater than those of the higher-altitude DCNet.  
However, it should be remembered that the present 
amplification factors apply to cross-wind variability 
only.  It was shown earlier (Hicks et al., 2008) that the 
statistics of the wind components themselves indicate 
a near-equality between the turbulence intensities 
aloft and those deduced from the surface network.  
There is no significant distinction between the 
space/time ratios for any of the sites summarized in 
the table.  

 
Table 2 

 
Summaries of the ratios describing the 
relationships between surface values of σ(θ) 
and values measured by the central DCNet 
towers at the locations indicated (see Table 1).  
F1 is the ratio of σ(θ)time to σ(θ)DCNet.  F2 is the 
ratio σ(θ)space/σ(θ)time for the surface 
subnetwork data set.  Two values are listed for 
each variable, F1 and F2, one value computed 
using all data, the other with wind speeds 
constrained to > 1 m/s.  The values in 
parentheses are standard deviations.  Since 
the means are computed geometrically, the 
standard deviations should be interpreted as 
×/÷ rather than the conventional +/-. 

___________________________________________ 
           F1                          F2
                All u     > 1 m/s         All u     > 1 m/s 
 
DOC  1.81  1.78           1.24      1.18 
 (1.43) (1.29)          (1.22)    (1.15) 
 
NAS  1.69  1.57           1.26      1.19 
 (1.50) (1.31)          (1.23)    (1.17) 
 
NAX  2.14  2.24            1.38     1.19 
 (1.48) (1.23)           (1.28)   (1.09) 
 
SSG  3.11  2.22            1.03      0.77 
 (1.79) (1.26)           (1.49)   (1.18) 
 
EML  1.45  1.52            0.97     0.93 
 (1.46) (1.46)           (0.98)   (1.33) 
 
TSQ  1.13  1.20            1.11     1.09 

 (1.54) (1.51)           (1.26) (1.22)
  

________________________________________ 



Direct Computation.  The second potential path to 
follow is to make use of aggregated data from the 
available surface stations to drive dispersion 
calculations directly.  Instead of estimating the 
properties u, θ, σ(u), σ(θ) and σ(φ) from external 
sources, derive values appropriate for the area of 
interest using the methodologies outlined above, 
based on consideration of all surface stations in the 
vicinity of the origin of relevance.  What constitutes 
the appropriate “vicinity” remains to be fully explored.  
Here, a radius of 5 km has been used, on purely 
heuristic grounds.  Selection of surface stations to be 
used in such aggregation will require local knowledge, 
especially in terrain more complex than that 
considered here.   
 
In either approach, it is accepted that at some 
downwind distance the diffusing material will become 
integrated with the skimming flow aloft, at which time 
the more conventional regional-scale dispersion 
approaches will become more relevant.   At this time, 
it is not clear where this “handover” might occur, but 
guidance from a number of sources leads to the 
suspicion that it will be at a distance in the range 2 to 
10 km, depending on the characteristics of the area.  
The present purpose is not to propose answers to all 
relevant questions of this kind, but to suggest a path 
that might profitably make use of local network data. 
 
5.  CONCLUSIONS 
 
Examination of wind roses derived using data 
collected in the central business district of 
Washington, DC, with wind roses derived from the 
nearby airport show that in this case the airport data 
are not indicative of flow affecting the downtown area.  
 
The wind speeds yielded by combining data from a 
local network of roof-edge anemometers are well 
correlated with the measurements at DCNet stations 
located 10 m above rooftops, although not as well 
correlated as for the velocity standard deviations.  
The average ratio of surface mean wind speed to 
DCNet rooftop speed is about 0.3 for the Washington 
situations considered here, and 0.4 for the two New 
York stations.   Early studies in the suburbs of 
Chicago yielded similar results (Fujita and Wakimoto, 
1982), and Hanna et al. (2006) have reinforced this 
finding using more recent observations.     
 
Provided the individual network sensor systems yield 
accurate wind field information, relatively simple 
techniques can be used to approximate the 
conventional plume dispersion quantities σ(u) and 
σ(θ) from data aggregated from many surface 
stations.  The results can then be employed in a 
variety of ways, either by modifying conventional 
dispersion codes or by making use of the 
observations themselves to drive the dispersion 
routines.  The details of this transformation remain to 
be fully explored for network situations.  In any case, 
the methodologies proposed here appear more 

appropriate for suburban rather than city-center 
applications, because observations of tracer 
movement in high aspect ratio city street canyons 
indicate that the material moves as puffs that retain 
considerable integrity.  Hence, the smoothed 
statistical descriptions provided by standard models 
appear inappropriate. 
 
Alternatively, it is feasible to employ local surface 
network data to derive the key quantities required to 
initialize dispersion routines.  The number of stations 
necessary to compile meaningful averages of the 
important variables remains poorly determined, but 
the evidence available for the cities addressed here 
(Washington DC, and New York City) indicates that 
ten stations could be adequate.  The density of 
locations in these two cities is such that this 
corresponds to an area with a radius of about 5 km 
around a location of specific interest.  If the 
amplification factor approach is used, then it is 
necessary to assume that the surface is 
homogeneous across this spatial domain.  Such an 
assumption is also inherent in the reliance on the 
derivative data themselves -- these data will certainly 
carry with them the signatures of any spatial 
inhomogeneities that might exist.  In other words, 
caution is recommended before extrapolating the 
present results to an area that has more terrain 
complexity than the two situations considered here.  
 
The matter of dispersion in the vertical direction 
requires special consideration.  Tracer studies 
conducted in New York City suggest that the street 
canyons are filled as puffs migrate according to the 
local wind.  In the lack of contrary evidence, it is 
tentatively concluded that the matter of vertical 
turbulence and diffusion might be approximated using 
the same amplification factors as are developed here 
for the cross-wind case.  It is acknowledged that the 
methodologies developed here will result in nowcasts 
rather than genuine forecasts.  The persistence of 
these nowcasts has been addressed elsewhere 
(Vogel and Pendergrass, 2007).  For the present, it 
should be noted that a cardinal time scale will be 
determined by the radius of the area across which 
surface station data are used and the velocity 
affecting the dispersion in the surface roughness layer 
– for the present implying a characteristic time scale 
of about 5/U hours, where U is the skimming flow 
wind speed in m/s.  Vogel and Pendergrass conclude 
that surface data of the kind reported here yield 
critical lag times in the range one to three hours, with 
an average of about 2.2 hours, suggesting that 
persistence would be a good way to proceed given 
the availability of local meteorological data updated 
every 15 minutes. 
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