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1. INTRODUCTION 

 
In atmospheric transport and dispersion (AT&D) 

there are two different methods of incorporating data 
into dispersion models: Data Assimilation (DA) and 
Multi-sensor Data Fusion (MSDF).  These methods rely 
on the premise that sensors report concentration data, 
wind data, or both types within the same domain as the 
model.  DA and MSDF both have the same goal: to 
incorporate data from sensors into a model to improve 
the prediction of an unknown (Hall 2004, Kalnay 2003).  
Although these methods share a common goal, their 
approaches to defining the unknown variables differ.  In 
DA, the unknown is a field variable, while in MSDF the 
unknown is an entity.  In some situations, one can pose 
the unknowns as either a field or an entity.  In AT&D this 
is possible and one can implement either method 
because contaminant concentration can be considered 
a field variable or a contaminant filled puff can be 
considered an entity.  The specification of a field or an 
entity changes the framework for incorporating data: 
with a contaminant puff, one takes a Langrangian 
approach to incorporating data, while for contaminant 
concentration one uses an Eulerian approach to 
incorporating data.  While both methods have been 
used extensively in AT&D, it is instructive to directly 
compare and contrast their use for modeling a 
contaminant release in a turbulent flow, which is the 
purpose of this study.   

Both MSDF and DA include several techniques by 
which data is incorporated into dispersion models.  
While the frameworks for the methods are disparate, the 
techniques available to incorporate the data are 
strikingly similar.  This overlap enables comparison, and 
here we compare the most basic DA technique, 
Newtonian Relaxation (Nudging), with the most basic 
MSDF technique, Alpha Filtering.  These techniques are 
the most basic because model computation time 
increases marginally when augmenting the model 
concentration field prediction (DA) or puff characteristics 
(MSDF) with an observation.  
 
2. PROCEDURES 

 
Our objective is an unbiased comparison between 

the Nudging and Alpha Filtering techniques through an 
analytic formulation. We assume stationary, 
homogeneous turbulence to maintain consistency  
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between frameworks, equations that govern puff 
dispersion under these meteorological conditions 
remain the same.  Further, the unknowns for each 
remain the same: the two-dimensional source location 
and total integrated mass of the puff.   

 
2.1  Data Assimilation: Nudging 

 
Data Assimilation techniques combine information 

from all available resources to better predict a field 
variable (Kalney 2003).  DA techniques come in two 
forms, static and dynamic techniques. (Daley 1991, 
Lewis et al 2006, Kalnay 2003).  Static techniques 
describe the field at a certain time and do not aid in 
numerical weather prediction (Lewis et al, 2006).  
Dynamic techniques, on the other hand, are 
implemented in numerical weather prediction and 
estimate the appropriate solution of a field variable at a 
later time (Lewis et al, 2006).  Within dynamic 
techniques exist sequential estimation, in which a model 
is updated in parallel with the observations.  This is 
done by augmenting the governing equations with an 
innovation vector consisting of a function multiplied by 
the difference between the model and observation at 
each grid point in the domain.  

For the comparison we consider the most basic 
sequential estimation technique, DA Nudging.  This 
technique is most basic because the function in the 
innovation vector becomes a constant 1/τ.  For this 
formulation, the specification of concentration as a field 
variable leads to the scalar conservation equation in 
turbulent flow.  In order to simplify this analysis we 
require that the sensors lie on the grid points so that 
interpolation techniques are not necessary.  We allow 
the equation to match the Partial Differential Equation 
(PDE) that produces the Gaussian puff model 
augmented with the innovation vector.  For this 
situation, the governing equation describing the 
evolution of a passive contaminant is given by  
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where U is the mean wind speed, x, y, and z are the 
spatial variables, t is time, xK , yK , and zK  are eddy 

diffusivities in the x, y, and z directions respectively, τ is 

the nudging coefficient, )(tCobs

v
accounts for the 

observations at the grid points at a certain time, and 
),,,( tzyxg  is a function that allows the observations to 

influence other grid points throughout the domain, 
forming the innovation.  These observations act as a 
source for concentration values at sensors throughout 



the domain.  In order to solve (1) we first obtain a 
Green’s function from the homogeneous equation and 
then add the effects that the initial conditions and source 
terms have on the Green’s function to obtain the nudged 
concentration equation.   
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where Ω represents the spatial domain and all other 
variables are the same as previously defined.  The 
unknowns in this problem are introduced through the 
initial condition which is given by, 
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where δ  is the Kronecker delta function, uox ,  and uoy ,  

represent the guessed initial source location and uM  
represents the guessed mass of the puff.  To complete 
the analytic formulation for Nudging, we then compute 
the first integral in (2) to obtain, 
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Then, if one considers ),,,( tzyxg  to be Gaussian, then 
(4) can be integrated to obtain 
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.   
Equation (5) predicts surface concentration values via a 
decaying Gaussian added with a superposition of 
decaying Gaussians multiplied by input from 
observations.  
 
2.2 Multi-Sensor Data Fusion: Alpha Filtering 

 
MSDF shares the same goal as DA and combines 

data from multiple sensors to better characterize an 
entity (Hall 2004).  Similar to DA, MSDF techniques fall 
into two categories, batch and sequential estimation 
(Hall 2004).  Batch estimation is an offline technique, 
while sequential estimation is an online technique.  
Unlike Data Assimilation, for sequential techniques in 
MSDF rather than augmenting the governing equation 
with an innovation vector, one instead updates an 
unknown after a prediction of the variable is attained 
(Hall 2004).   

 Traditionally, the Alpha Filter is designed to 
update the position of an entity. Here we extend the 
filter to update characteristics of an entity as well 
(Painter et al 1990).  For our formulation of Alpha 
Filtering, a PDE no longer needs to be solved.  The 
problem is posed as one in optimization: puff 
characteristics are optimized given contaminant 
concentrations.  The characteristics of the puff that we 
wish to ascertain are total integrated mass of the puff 
and the two-dimensional puff location at each time step.  
In order to derive these characteristics, we fit a 
Gaussian puff to the data.  Note that with the 
assumption of stationary, homogeneous turbulence, and 
aligning our x coordinate with the mean wind direction, 
we only need to find the downwind location of the puff 
when optimizing the two-dimensional location.  We pose 
the optimization problem in terms of least squares, 
taking derivatives with respect to the unknowns of the 
squared difference between the observations and the 
values computed from the Gaussian puff equation.  
Because the Gaussian puff equation involves 
exponential terms, it is easier to take the natural 
logarithm of both. 
 

( )

( ) ⎟
⎠
⎞⎜

⎝
⎛ +−

∂
∂

⎟
⎠
⎞⎜

⎝
⎛ +−

+∂
∂

2)(,(ln()ln(
)(

2)(,(ln()ln(
)(

UtoxMCobsC
M

UtoxMCobsC
Utox

            (6) 

 
where )(,( UtxMC o + is given by 
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 The alpha filter updates the guessed characteristics 
with the ascertained characteristics at each time step 
with an equation given as a linear combination of the 
two (Hall 2004):  
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where the subscript g denotes the guessed 
characteristic, the subscript a indicates the ascertained 
characteristic, and the subscript f designates the final 
characteristic, and α is a constant whose value is 
between zero and one and plays a similar role to the τ in 
nudging.  To complete the analytic formulation for the 
Alpha Filter, we replace the unknowns in the Gaussian 
puff equation with (8) to obtain, 
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Surface concentration values are predicted by (9), which 
is a Gaussian puff equation with updated unknowns. 
 
3. RESULTS 

 
The final piece of the puzzle needed to enable the 

comparison is data.  Here, we implement an identical 
twin experiment to compute the data, where the forward 
model creates the observations (Daley 1991).  This is 
advantageous for model development as we can check 
whether our analytic methods are working properly.  
Because contaminant concentration will not exactly 
follow a Gaussian distribution, we add white clipped 
Gaussian noise to the truth data to account for 
atmospheric and sensor noise.  This is done for several 
signal to noise ratio (SNR) levels. The noisy data is then 
taken as the truth in the experiment. 

The result of the comparison is given in Table 1.  
As one can see, the Alpha Filter outperforms Nudging 
for all SNRs tested.  For Nudging, the RMSE remains 
nearly constant for every case. This occurs as the 
function ),,,( tzyxg spreads the observations out over 
the domain, and therefore acts to spread and smooth 
the noise.  Thus, one should not expect the RMSE for 
Nudging to change significantly as the SNR increases.  
The same notion is not true for the Alpha Filter, as the 
Alpha Filter predicts surface concentration values with a 
Gaussian model; therefore it is expected that accuracy 
should deteriorate with increasing noise.  When the 
SNR is infinite, the optimized values of the unknowns 
are very accurate and thus the Alpha Filter almost 
exactly reproduces the data.  As the SNR decreases, 
the RMSE remains smaller than the RMSE for Nudging 
implying that the optimization is 
 
 
 
 
 
 
 

Table 1: RMSE at the last time step summed over all 
the grid points 
Signal to 
Noise 
Ratio 

 
INF 

 
100 

 
 50 

 
 10 

 
 5 

 
  2 

RMSE 
for 
Nudging 
(10^-9) 

 
.430 

 
1.28 

 
.430 

 
1.11 

 
.530 

 
.866 

RMSE 
for Alpha 
Filtering 
(10^-9) 

 
0.0 

 
.00083 

 
.0079 
 

 
.016 

 
.047 

 
.079 

 
still relatively successful implying more success for the 
Alpha Filter than Nudging. 
 
4. CONCLUSIONS 

 
This work has analytically and numerically 

compared and contrasted the methods of DA and MSDF 
for incorporating data into models using Gaussian puff 
transport and dispersion as an example.  The Eulerian 
framework of DA treats the concentration values as a 
field variable and leads to solving a PDE.  In contrast, 
the Lagrangian framework of MSDF casts the puff as an 
entity with features that can be optimized.  When the 
optimization is approached analytically with a least 
squares technique, one obtains an expression for a puff 
characteristic.  The comparison results in the Alpha 
Filtering being champion over Nudging.  Because Alpha 
Filtering and Nudging act similarly but within 
formulations suited to their specific framework, the 
conclusion is not that Alpha Filtering is better than 
Nudging, but that the entity formulation is better in this 
situation than the field approximation.  In future research 
we plan to extend the analytic comparison to other 
MSDF and DA techniques as well as to progress 
beyond the identical twin experiment to incorporate real 
data.  The latter extension will require numeric 
formulations to the problem instead of analytics.  
Further, we wish to explore the implications of the 
synergistic application of entity and field frameworks in 
AT&D modeling. 
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