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1. INTRODUCTION 
 

The Blue River basin in south-central 
Oklahoma (Fig. 1) has been the focus of 
considerable hydrologic research in recent years, 
including the National Weather Service’s 
Distributed Model Intercomparison Project (DMIP; 
Reed et al. 2004) and the Oklahoma Water 
Resources Board’s Arbuckle-Simpson Hydrology 
Study. More than 15 hydrologic models have 
simulated streamflow in the basin as part of various 
studies, including for DMIP. Several studies that 
used distributed hydrologic models to simulate 
streamflow in the basin reported overestimation 
during periods of low flow (typically late summer 
and fall) and underestimation of streamflow during 
high flow periods (Ajami et al. 2004; Carpenter et al. 
2004; Gourley et al. 2006; Moser 2008).  

The basin is dominantly composed of loam 
and clay soils (Fig. 2) that have a tendency to 
shrink or swell as a function of soil water content 
(Gourley et al. 2006). After prolonged dry periods, 
the soil shrinks and forms cracks that act as 
conduits for increased saturated hydraulic 
conductivity (Ksat), thus reducing runoff and 
eventually streamflow resulting from that runoff.  
During wet periods, the soil swells, restricting 
available pore space for infiltration and increasing 
the volume of runoff. Thus, Ksat can potentially 
vary over orders of magnitude for rainfall events 
occurring during the different soil moisture regimes, 
leading to significant changes in runoff volume. A 
similar relationship between Ksat and soil moisture 
content was observed in similar soil types in 
Pennsylvania (Fig. 3; Jabro 1996). Many input 
parameters for distributed hydrologic models are 
usually assumed to be constant, including Ksat. 
Thus, in a basin with vertic soils (soils that shrink 
and swell), the constant Ksat may be an 
underestimate when soils are very dry and an 
overestimate when soils are wet.  

The goal of this study is to find a statistical 
relationship between real-time atmospheric and 
hydrologic data and in situ measurements of Ksat in  
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Figure 1. SSURGO Ksat estimates for the Blue River watershed 

and locations of nearby observing sites. Red circles 
represent Oklahoma Mesonet sites, black triangle 
represent USGS stream gauges, and the blue star 
represents the location of in situ Ksat measurements. 

 

 
Figure 2. SSURGO soil texture classifications for the Blue River 

watershed. 
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Figure 3. Reduction of field saturated hydraulic conductivity with 

increasing soil water content. (Jabro 1996). 
 
the Blue River basin. The relationship can then be 
used for parameter estimation for a distributed 
hydrologic model to determine if variable Ksat input 
leads to better streamflow simulations in a basin 
with vertic soils. 
 
2. METHODOLOGY 

 
Saturated hydraulic conductivity is not a 

parameter commonly measured in real-time.  
However, with a large enough dataset of Ksat 
measurements in the basin that reflect annual 
variability of soil conditions, a first order multiple 
regression equation can be found that relates Ksat 
to observations that are available in the basin in 
real-time. The equation takes the form: 

 
y=β0 + β 1x1 + β 2x2 +…. β nxn 
 
where the β terms are coefficients for the 

linear model that minimize the variance of the data 
through a least squares approach (Ott and 
Longnecker 2001). The x terms represent the 
independent variables used to predict y. In this 
study, the x terms are automated observations from 
the Oklahoma Mesonet, and y is the measured 
Ksat. Once the coefficients are determined, the 
regression equation can then potentially be used in 
place of real-time Ksat measurements (or a 
constant Ksat) for parameter estimation in a 
distributed hydrologic model. 

 
a.   Data 

  
 Saturated hydraulic conductivity 
measurements have been periodically recorded in 
the Blue River basin since June 2008 using a 
manual double ring infiltrometer. The 
measurements were taken at the Blue River 
Hunting and Fishing Wildlife Refuge near 
Connerville, OK, downstream of the Connerville 
USGS stream gauge (Fig. 1). Twelve Ksat 
measurements have been recorded as of 
December 1, 2008. Measurements continue to be 
recorded in order to encompass a full year of soil 
conditions at that location, but data collected so far 
support the theory that Ksat varies significantly with 
time in the basin, with a range of one order of 
magnitude from June to late July. 

The Oklahoma Mesonet has been 
collecting real-time meteorological data since 1994 
(McPherson et al. 2007). Real-time soil moisture 
sensors have been installed at most Mesonet sites 
that measure soil moisture at up to four standard 
depths. Other Mesonet data relevant to this study 
include: air temperature, relative humidity, and soil 
temperature at up to three depths. Archived real-
time data for all of these variables (including soil 
moisture) were acquired for three Mesonet sites in 
and near the Blue River watershed: Fittstown 
(FITT), Tishomingo (TISH), and Durant (DURA). 
FITT was the only site located within the basin. 
However, TISH is a shorter distance from the Ksat 
measurement location (Fig. 1). Soil moisture 
measurements are available at three depths at 
FITT and DURA (5 cm, 25 cm, and 60 cm). Only 
the shallowest two depths are available for TISH. 

 
b.   Analysis 
 
Daily means were computed (00Z to 00Z 

UTC) from the real-time measurements for the days 
when Ksat measurements were taken in order to 
represent general climatic trends rather than short-
term variability associated with diurnal effects, 
particularly for the air and soil temperature data. 
Those daily values were then used as the 
predictors in the multiple regression with the 

 
Correlation Coefficients for Saturated Hydraulic Conductivity and Fittstown Mesonet Data 
 

 Ksat Tair RH 5cm SM 25cm SM 60cm SM 5cm ST 10cm ST 30cm ST 

Ksat 1.00 -0.28 -0.79 -0.24 0.00 0.47 -0.50 -0.51 -0.54 
Tair  1.00 0.41 0.13 0.07 -0.05 0.93 0.92 0.88 
RH   1.00 -0.18 -0.26 -0.38 0.64 0.65 0.69 
5cm SM    1.00 0.16 -0.22 0.10 0.09 0.04 
25cm SM     1.00 0.61 -0.03 -0.05 -0.09 
60cm SM      1.00 -0.07 -0.07 -0.06 
5cm ST       1.00 1.00 0.99 
10cm ST        1.00 0.99 
30cm ST         1.00 
 
Table 1. Correlation coefficients of measured saturated hydraulic conductivity and daily means of parameters from the Fittstown 

Mesonet site. Correlation coefficients greater than 0.9 are highlighted in red. 

 



measured Ksat data as the criterion. Multiple 
regressions were computed (using the R statistical 
software) separately for each site and for an 
average of all three sites to determine which best 
correlated to the Ksat data trend.  

Because the Ksat dataset is small (12 
measurements), it was necessary to compute the 
multiple regression with as few predictor variables 
as possible. Variables with t value < 1.5 in the initial 
multiple regression analysis were not considered to 
be significant predictors and were discarded. 
Additionally, for variables that were highly 
correlated with other predictors (R2 > 0.9), only the 
one with the highest t value was retained. The 
multiple regression was then recomputed using the 
remaining predictors to generate a final regression 
equation for each site and for the basin average. 
 
3. RESULTS AND CONCLUSIONS 

 
Table 1 shows the correlation coefficients 

for all the initial predictors for FITT. The soil 
temperature data for the 5 cm and 10 cm depths 
were highly correlated with each other and with air 
temperature (high correlation is highlighted as bold 
red in Table 1), which was also the result at TISH 
and DURA. Thus, the 5 cm and 10 cm soil 
temperature parameters were not used as 
predictors. 

Table 2 lists the analysis statistics for the 
individual site multiple regressions including 
coefficients, standard error, t value, and p value. 
The multiple regression calculated for TISH had a 
much lower correlation to the Ksat measurements 
than the other two sites with an R2 of 0.5062. The 
lower correlation might be the result of the lack of a 
60 cm soil moisture dataset at that location. 
Another interesting result for TISH was that relative 

humidity and 5 cm soil moisture were the most 
significant predictors whereas air temperature and 
deeper soil moisture were more significant at the 
other two sites. The estimates of Ksat derived from 
the FITT and DURA regression equations were 
more highly correlated to the measured Ksat, with 
R2 values of 0.9550 and 0.8788, respectively (Fig. 
4). A higher correlation between FITT and the Ksat 
measurements than for DURA was expected due to 
the closer proximity of FITT to the Ksat site and 
because the FITT observations represented the 
upstream soil conditions that would have an impact 
on streamflow at the Connerville stream gauge site.  
 

 
 
Figure 4. A scatterplot of measured Ksat and Ksat estimated from 

the multiple regression equation. The R2 values for 
Fittstown, Tishomingo, and Durant are 0.9550, 0.5062, 
and 0.8788, respectively. The red line represents perfect 
correlation. 
 

The multiple regressions for the average of 
all three sites and the average of only FITT and 

Fittstown Multiple Regression Statistics (R2 = 0.9550) 
 
 β Coefficient Standard Error t Value Pr(>|t|) 
Intercept -1.250e-03 3.885e-04 -3.216 0.014733 
Tair 5.453e-05 7.614e-06 7.162 0.000183 
25cm SM -5.046e-04 7.050e-05 -7.158 0.000184 
60cm SM 9.684e-04 1.121e-04 8.639 5.56e-05 
30cm ST -1.635e-04 1.745e-05 -9.366 3.29e-05 

 
Tishomingo Multiple Regression Statistics (R2 = 0.5062) 
 
 β Coefficient Standard Error t Value Pr(>|t|) 
Intercept 3.598e-03 1.099e-03 3.273 0.00964 
RH -3.448e-05 1.136e-05 -3.036 0.01412 
5cm SM -2.673e-04 1.683e-04 -1.588 0.14670 

 
Durant Multiple Regression Statistics (R2 = 0.8788) 
 
 β Coefficient Standard Error t Value Pr(>|t|) 
Intercept 3.529e-04 6.926e-04 0.510 0.62600 
Tair 3.973e-05 1.248e-05 3.182 0.01544 
5cm SM -5.911e-04 1.157e-04 -5.110 0.00138 
25cm SM 5.474e-04 1.206e-04 4.541 0.00266 
30cm ST -1.137e-04 2.810e-05 -4.046 0.00490 
 
Table 2. Statistics for the Fittstown, Tishomingo, and Durant multiple regression analyses using only predictors with t value > 1.5.  



DURA both produced lower correlations to the Ksat 
data than the individual regressions for FITT and 
DURA, so basin average observations were not 
better predictors of Ksat than the individual site 
observations. 

The independent parameters selected as 
significant predictors of Ksat variation (air 
temperature, soil moisture, and deep soil 
temperature) do seem to indicate that deep soil 
vertic processes may be at least partly responsible 
for the change in infiltration rates and thus changes 
in runoff and streamflow. However, when taken 
independently as predictors of Ksat (such as the 
correlations in the Table 1), they do not appear to 
strongly correlate with the Ksat measurements. The 
multiple regression results imply that a combination 
of several parameters yielded the best fit. In other 
words, the occurrence of both high temperatures 
and dry soils coincided with changes in infiltration 
rates, but little correlation was found when looking 
at high temperatures or dry soils alone. 

Caution must be taken when interpreting 
the statistics because of the small sample size of 
Ksat measurements. As more measurements are 
taken, particularly through the spring months, the 
multiple regression analysis will be recalculated to 
determine whether the high correlation is a physical 
reality or the result of too few measurements. 
 
4. FUTURE WORK 

 
Future research will focus on completing a 

multiple regression analysis for at least a full year of 
Ksat measurements to encompass the full range of 
soil moisture conditions in the basin. When the 
updated regression analysis is complete, the Ksat 
regression equation will be applied toward 
parameter estimation in a physics-based distributed 
hydrologic model that uses Ksat as input to 
determine if streamflow simulations are improved. 
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