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1.  INTRODUCTION 
 

The Phoenix metropolitan area is currently 
designated as 'serious' with regard to violation of the 
U.S. National Ambient Air Quality Standards (NAAQS) 
for particulate matter of aerodynamic diameter less 
than 10µm (PM10). Most of the severe PM10 violations 
have been attributed to regional natural exceptional 
events or local exceptional (episodic) events 
associated with windblown dust emanating from area 
sources such as construction and agricultural sites, 
vacant lots and alluvial channels. During such events, 
the pollution concentration spikes for a short period of 
time, thus raising the 24-hour average of PM10 
anomalously. This may lead to the excess of PM10 
concentration above the currently set 24-averaged 
standards, 150µg/m3, determined in the interest of 
protecting public health (primary standard) and the 
environment (secondary). For PM10, both standards 
are the same.  Even if the NAAQS are not exceeded 
during such an event, severe health repercussions 
can occur due to pulsed PM10 events. For example, 
thunderstorm-induced asthma epidemics that swamp 
hospital emergency rooms within 20 minutes of the 
onset of a storm have been attributed to suspension 
of micron-sized starch granules that originate in pollen 
(Venables et al. 1997). Unlike for industrial and 
transportation-networks associated sources, it is 
difficult to predict and control PM pollution arising from 
natural episodic events. In general, deterministic 
models have been used for such predictions, but 
unavailability of the up-to-date pollution inventories, 
the complexity of models and the fact that air pollution 
prediction models, such as CMAQ, do not have sound 
dust entrainment module have been the bane in 
developing operational forecasting tools based on 
deterministic models (Choi et al. 2006; Choi & 
Fernando 2007).  

 
To this end, the Italian National Agency for New 

Technologies, Energy and Environment (ENEA) has 
been working with ASU to develop a stochastic model 
based on neural networks, which is called EnviNNet. 
The neural networks (NN) have already been used in 
air quality forecasting in Rome, Milan and Napoli with 
considerable success. Developing EnviNNet required 
careful selection of a subset of input variables, paying 
attention to site-specific exceptional events, including 
time lag effects. The data noise needed to be 
considered in order to satisfactorily adapt the non-
linear dynamic interaction between meteorological 
and pollution related processes. EnviNNet employs 3-
layer MLP network architecture with hidden nodes, full  

 
*Corresponding author address: M. C. Mammarella, ENEA 
L.Thaon di Revel 76, 00196 Rome, Italy; 
e-mail: mariacristina.mammarella@sede.enea.it

 
 
connection between layers and no connection 
between neurons in the same layer topology and 
exponential transfer function. In training the network, 
characteristics of high, low and episodic air pollution 
events at a particular data site were taken into 
account. 
 

Since PM10 concentrations are heterogeneous 
throughout the year, to ensure that EnviNNet is robust 
and adaptive to the local climate, specific input data 
subsets were built by combining time section data 
from different years. Meteorological and pollution data 
were taken from selected four-to-six-month windows 
as well as time periods that show noteworthy patterns. 
For the Phoenix area, as discussed below, EnviNNet 
showed better performance compared to conventional 
deterministic models in predicting PM10 peaks. It 
should be noted that testing has been conducted only 
for a single station and a single pollutant in a specific 
geographical area, and hence further model 
evaluations are necessary before arriving at 
conclusions. 
 
2. ENVINNET 

Considering its wide usage in atmospheric 
applications (Gardner & Dorling 1998; Nishka et al. 
2004), the kind of NN used was a Multi Layer 
Perceptron (MLP). The MLP structure consists of an 
interconnected system of nodes (neurons) within a 
hidden layer that employs non-linear continuous 
transfer functions that connect input and output 
vectors. Bearing in mind that the main purpose of 
EnviNNet is the prediction of PM10, the following 
design choices were made:  

• Architecture: three-layer MLP network, with 
the number of hidden nodes selected to 
reliably rebuild data from a test data-set.  

• Topology: full connection between layers 
and no connection between neurons in the 
same layer;  

• Transfer function: exponential, to ensure 
positive functions at the output node and 
hyperbolic tangent for hidden nodes. The 
latter is an excellent compromise for a non-
linear function both globally and locally;  

• Information flow: feed-forward; 

• Representation of input variables: 
standardization of inputs to eliminate 
problems due to different measurement 
scales for different  predictors; 
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• Reconstruction of the output signal: 
through linear combination and 
exponentialization of the outputs of hidden 
nodes. 

• Training method: parameters are learned or 
estimated through the conjugate-gradient 
method. It is preferred over the back-
propagation method as it exploits both first-
order (gradient) and second-order 
(curvature) data during optimization of the 
objective function.  

Mathematically, the three-layer NN has the 
following form: 

( )),( wxfy ϕ=  

where x represents input data, w the coefficients 
(parameters estimated by learning), f the activation 
functions from layers 2 to 3 and φ the activation 
functions from layers 1 to 2. The choice of f and φ 
determines the output; for example, if φ is a 
hyperbolic tangent and f is linear, an input of 
meteorological and pollution variables are transformed 
to an output with both negative and positive values, 
but if f is exponential, the output can have only 
positive values. As such, an exponential function for 
the output and a hyperbolic tangent activation function 
for the hidden neurons were selected. 

 
The schematic chart of the neural network 

architecture is shown in Figure 1.  
 

 
Figure 1. Neural network architecture 

 
3. COMPARISON BETWEEN CMAQ AND 
ENVINNET – RESULTS AND DISCUSSION 
 

Two different types of predictive systems – 
deterministic (CMAQ) and stochastic (EnviNNet) were 
evaluated against observations at one monitor in the 
Central Phoenix (CP) area. A one month 'design' 
period covering November 2005 was selected, 
considering that, in general, winter months exhibit the 
highest PM10 concentrations and hospital visits due to 
respiratory illnesses. The selected period has both 
high and low PM10 days including exceptional events 
with very high particle concentration due to storm 
comditions. The study domain with location of the 
available monitors is shown in Figure 2. The 
observations are taken only from CP in this study, but 
other sites for a future forecasting network are also 
shown in the figure. 
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Figure 2. The locations of pollution and meteorological 
monitoring stations in Phoenix, Arizona.  
 
  The simulations were conducted using the 
regional air quality modeling deterministic system 
Models-3. It consists of mesoscale meteorological 
model MM5 (Grell&Dudia, 1994), Sparse Matrix 
Operator Kernel Emissions Processor SMOKE, and 
Chemical Transport Model CMAQ (Byun&Ching, 
1999). Three nested domains with 36-, 12- and 4-km 
grid resolution were utilized to predict flow, emissions 
and air quality respectively. The outcomes from the 
finest domain were compared with the results from 
EnviNnet and observed data. The other domains were 
used to provide boundary and initial conditions for the 
inner domains only. 
 

The meteorological and PM10 data from two years 
(2005, 2006) were used with the stochastic model 
EnviNNet to select the set of appropriate pre-
processed historic time series at the Central Phoenix 
site (CP) to predict the concentration in the 
hindcasting mode. Statistical and descriptive 
indicators were found to represent behaviour of the 
CP neighbourhood via various classes of the input 
parameters. The indicators account for aggregated 
homogeneous spatio-temporal bands of microclimatic 
factors and air pollutant concentration. The latter is 
dependent on the wind transport, diffusion of PM10, 
and emissions, which can be separately specified for 
working days and holidays. 
  The comparison of EnviNNet performance 
against the predictions of the deterministic modeling 
system is presented below. The regulatory PM10 
enforcements are made based on 24-hour averages, 
which were used to estimate the relationship between 
pollution and asthma events (Dimitrova et al. 2008). 
Both models were evaluated against the observation 
as shown in Figure 3. The neural network 
satisfactorily predicts the PM10 peaks whereas CMAQ 
has problems of capturing the exceptional events 
satisfactorily.  
 
  Although the deterministic methods would have 
given ideal predictions under ideal initial, boundary 
and pollution inventory conditions with all scales of 
motion fully resolved, the present status of the model 
is far from this state. The model does not resolve 
processes   with   scales  smaller  than  the  grid  size,  
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Figure 3. 24-hour PM10 concentrations predicted by 
CMAQ and EnviNNet in comparison with the 
observations. 
 
which are parameterized. The model performance is 
based on the hourly data modeled by individual 
methods and the observed data are shown in Figures 
4 and 5. The coeficients of determination (R2) are 
also shown in the plots. The R2 is approximately two 
times higher for EnviNNet compared to CMAQ. The 
predicted hourly concentrations are closer to the 
observed values and crowd around the perfect 
coefficient of determination (R2=1) while the scatter 
plot for CMAQ is more dispersed. 
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Figure 4. Scatter plots of PM10 concentration 
predicted by CMAQ in comparison with hourly 
observed data.   
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Figure 5. Scatter plots of PM10 concentration 
predicted by EnviNNet in comparison with hourly 
observed data.   

In addition, different statistics were computed to 
estimate the model performance, and they show 
reasonable agreement between the calculated and 
observed values of the both models (Table 1).  

Table 1. Summary of the statistical measures that 
compares the observations and model concentrations 
of PM10 for study periods. 

 

Model MAE RMSE IA Period
CMAQ 26.12 34.4 0.68 November

EnviNNet 19.01 25.02 0.77 November
CMAQ 18.88 31.94 0.75 5-9 Nov.

EnviNNet 16.5 20.11 0.82 5-9 Nov
CMAQ 22.2 36.72 0.59 25-29 Nov.

EnviNNet 18.15 23.81 0.79 25-29 Nov.
 
The calculations were made for one month and 

for two five-day periods with good agreement and high 
disagreement for both models in comparison with the 
observations (see Appendix for the statistics 
definitions). The Index of Agreement (IA) is more than 
0.6, which shows good correspondence between the 
calculated and observed data. Generally, EnviNNet  
gives  better  IA in comparison with CMAQ for all 
periods considered here. The Mean Absolute Errors 
(MAE) are less than 26 for CMAQ and less than 19 for 
EnviNNet. The Root Mean Square Errors (RMSE) are 
in the range of 20 – 37 for different periods. The 
stochastic model EnviNNet yields smaller errors than 
CMAQ. 

The emissions inventory in its model-ready state 
has a critical bearing on the model performance. 
About 70% of ambient PM10 in Phoenix comes from 
fugitive emison including a large portion of soil dust 
issions. These dust emissions from activities such as 
traffic on unpaved roads, land clearance, and building 
and road construction are difficult to quantify well.  
Furthermore, emissions from many source categories 
cannot accurately be distributed in time and space. 
This questionable reliability of the emissions (an ever 
present stumbling block in most air pollution studies) 
adversely affects CMAQ performance.  

The advantages of the model EnviNNet are that 
this system does not need the emission inventories 
and it dynamically checks its PM10 predictions against 
actual data so that the continued re-analysis of the 
data refines the learned network, thus improving its 
predictive capabilities.  

 
4. CONCLUSIONS 
 

As an alternative to the deterministic Models-3 
system, the neural network is found to better predict 
moderate to high PM10 concentrations than CMAQ. 
The principal advantage of using EnviNNet in an 
asthma warning system is that it would not require an 
emission inventory or daily complicated computational 
efforts of the grid-based, deterministic modeling 
system. The neural network is much easier and 
quicker to use than CMAQ and could be partially 
automated for issuing health warnings. The 
shortcoming of EnviNNet is a limited geographical 



coverage. Only one site was examined, therefore 
similar work at additional sites is needed.  

Gardner M. W. and Dorling S. R., 1998: Artificial 
neural networks (the multilayer perceptron) - a 
review of applications in the atmospheric 
sciences. Atmospheric Environment, 32, 2627–
2636. 

 
Implementing EnviNNet on several stations in the 

Phoenix metropolitan can provide pollution distribution 
both spatialy and temporally, using interpolation 
methods (e.g., Kriging). 

Niska H., Hiltunen T., Karppinen A., Ruuskanen J., 
Kolehmainen M., 2004: Evolving the neural 
network model for forecasting air pollution time 
series”. Engineering Applications of Artificial 
Intelligence, 17, 159-167. 
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Appendix  
 
Definitions of statistics: 
 
The following indicators were used for performance 
evaluation. Here P is the predicted value, O the 
observed value, and P and O  the mean values. 

Choi, Y-J., Hyde, P., Fernando, H.J.S., 2006: 
Modeling of episodic particular matter events 
using a 3-D air quality model with fine grid: 
Applications to a pair of cities in the U.S./Mexico 
border. Atmospheric Environment, 40, 5181-
5201. 
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Choi, Y-J. and Fernando, H.J.S., 2008: 
Implementation of a Windblown Dust 
Parameterization into MODELS-3/CMAQ: 
Application to Episodic PM Events in the 
U.S./Mexico border. Atmospheric Environment, 
42, 6039-6046. 
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Venables, K.M., Allitt, U., Collier, C.G., Emberlin, J., 

Grieg, J.B., Hardaker, P.J., Highham, J.H., Laing-
Morton, T., Maynard, R.L., Murray, V., Strachan, 
D., Tee, R.D., 1997: Thunderstorm-related 
asthma - the  epidemic of 24/25 June 1994. 
Clinical Exper. Allergy, 27, 725-736. 

 
 

 


