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1. Introduction 
For water management, timely quantitative 

precipitation estimates (QPE) are critical. 
Unfortunately, there remain huge uncertainties 
with QPE that can interfere with water 
management decisions. These uncertainties are 
particularly large and damaging in mountainous 
regions where accurate point measurements at 
gage sites are sparse and instrumentation is often 
difficult to maintain, and radar observations are 
plagued by blockage problems. Under these 
conditions, there is significant potential value for 
high-resolution precipitation forecasts to serve a 
role as part of a blended product that can help to 
guide solely observation-driven QPE. However, 
suitable procedures must be devised to blend the 
forecasts and observations. 

Here, we describe an effort to improve grid 
point specific QPE and basin-averaged water 
volume estimates by applying variationally-
driven ensemble methods. These methods have 
been successfully employed in attempts to 
assimilate other quantities, but their application 
to precipitation has not been fully realized. 

We explore the following questions: 
 

1. Can explicit and meaningful precipitation 
error covariances be recovered for a specific 
event or series of events? 
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2. Can these error covariances be used 
explicitly to recover improved precipitation 
estimates as compared to withheld rain 
gauge sites, and provide some estimate of 
the expected analysis error covariance? 

3. Are these precipitation estimates an 
improvement over existing estimates? 

 
In Section 2 we formulate the optimal data 

assimilation technique used to produce QPE 
fields. Section 3 describes our methodology to 
apply the technique to specific events in the 
Northern California Sierra Nevada Mountains 
(specifically the basin of the American River 
northeast of Sacramento). The resulting fields for 
one extreme event are described in Section 4, 
including comparison with analyses from other 
sources and techniques. Section 5 summarizes 
our findings and suggests improvements to the 
technique and potential uses for the optimal QPE 
analyses. 
 
2. Background 

The basic formulation of the optimal data 
assimilation techniques that are used today in 
weather analysis is readily derived from general 
stochastic inverse problem theory under 
assumption that information about the state of 
weather is given by quantities contained in the 
NWP model forecast and in observations. In 
inverse problem theory the information from a 
model and observations is combined by a 
conjunction of the Gaussian probability density 
functions (pdf’s) resulting in a new, joint 
posterior pdf. This conjunction is typically 



presented as direct application of the Bayes 
theorem, and is written   
(1)                                             ( ),(exp~ yxJp aposterior − )                   

where  and  are modeled and measured 
stochastic Gaussian quantities, respectively,  
cons  is some arbitrary constant and  
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J  is the 
well known cost function (Kalnay, 2004), which 
we define as 
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Since precipitation is generally not normally 

distributed it is necessary that we transformation 
our precipitation variables to log form.  The 
assumption is that log x is normally distributed. 
Thus in our application,  is the analysis state 
vector containing the log of all precipitation 
estimates on the analysis grid,   is the log of 
observation of type , which could be either a 
radar or rain gauge estimate. is necessary to 
ensure   and  is the transformation from 
the analysis state space into observation space, 
referred to in our context as the “observational 
network operator”.  is the inverse 
covariance matrix of logged observational errors 
for each observation type. In the first term in (2) 
it is implicitly assumed that the observation 
errors from different observation types are 
uncorrelated.  is the log of background 
precipitation vector of the same length (would be 
some deterministic estimate of precipitation from 
a model) as the analysis precipitation vector. 

 is the inverse covariance matrix of the 
logged background precipitation errors derived 
from the 3-km ensemble. This matrix is the focus 
of our ensemble post processing. For a limited 
domain Pf may be fully recoverable.  
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When the observational operators  are 
linear and are combined into one operator they 
are conveniently denoted as H. The posterior 
solution in this case is expressed respectively in 
terms of mean and covariance as:  

ih
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3. Methodology 

The approach described here involves an 
analytical test bed with known observed and 
forecast precipitation fields and live tests with 
actual 3-km data model runs. The analytical test 
bed will be used to assess the possibility of 
recovering explicit error covariances and 
applying equations (3) above. In this controlled 
environment an assessment can be made of the 
accuracy of the recovered analyzed precipitation 
and its error characteristics. For our purposes, 
background error covariances are determined 
using a hybrid scheme that involves a linear 
combination of both time-dependent 
(climatological) and time-independent (ensemble 
forecast-based) covariances. The relative 
influence of the two are determined via the 
settable coefficient alpha in the equation  

 
(4)   Pf  = a Pc + (1-a) Pe 

     
where Pc  is the climatological covariace from 
many cases, described below and a  is a weight 
that goes from 0 to 1.  Pe is the ensemble derived 
covariance.  

Climatological covariances are determined 
from a set of 95 cases (actually 6h time periods) 
during the IOPs for the first two HMT-ARB field 
exercises in 2005-6 and 2006-7. Currently, a 
matrix inversion including all observations is 
applied as the numerical solution to the optimal 
QPE. We are also investigating an alternative, 
more efficient solution technique that involves 
serial inversion in model space, with the 
assumption that observational errors are 
uncorrelated. 
 
a. Applying the technique during  the HMT 

ARB 
 

To assess the capability of this technique to 
produce useful QPE fields during heavy to 
extreme precipitation episodes, we have applied 
it to several Intensive Operating Periods (IOPs) 
of the HMT ARB field exercise during 2005-
2006. For a description of this exercise and 
tabulation of IOPs, see the HMT website at 
http://www.esrl.noaa.gov/psd/programs/2006/hm
t/. This paper focuses on results from IOP 4 
starting on Dec 29 2005 and extending through 
the first 6h period of January 2006. Fig. 1 shows 
a snapshot of gage-corrected radar estimates of 
precipitation (Stage IV), a WRF model forecast, 
and gage observations for one 6h period during 
IOP 4. It is clear that this period represents a 

http://www.esrl.noaa.gov/psd/programs/2006/hmt/
http://www.esrl.noaa.gov/psd/programs/2006/hmt/


very significant precipitation event in Northern 
California, with large regions of the two domains 
receiving over 1.5 in of rainfall during the 6h 
time period in both the observations and the 
forecasts. In general, the forecasts and Stage IV 
estimates are similar and of comparable 
magnitude, but the forecasts reveal more detail 
than the smoother Stage IV estimates. Much of 
this detail is due to terrain variations in both the 
coastal ranges in the western half of the larger 
domain and the Sierras to the East. The roughly 
east-west oriented precipitation maxima in the 
forecasts (largely missing in the Stage IV plots) 
that appear prominently in the smaller ARB 
domain are likely also a result of interactions 
with terrain features, which include ridges and 
valleys that trend from west-southwest to east- 
northeast (Fig. 2). We note that this ability of 
models to incorporate the impact of terrain is one 
of the major reasons that we believe blended 
fields including forecasts can be useful for QPE. 
 
 

 
FIG. 1. Radar/Gage analysis for 6h period ending at 
0000 UTC 31 December 2005 during IOP 4 (upper 2 
left panels) and 6h lead time WRF forecast (upper 2 
right panels) for the full 3-km WRF domain (upper 
row) and smaller ARB domain (middle row). 
Accompanying gage measurements from the 
opFerational hourly HADS network for the two 
domains are shown in the bottom row. All legends are 
in mm. 
 
 

 

 
 
FIG. 2. Terrain features of the American River Basin. 
Locations of gages and other observation platforms 
are also shown. Image is taken from the HMT website 
http://www.esrl.noaa.gov/psd/programs/2006/hmt/. 
 
b. WRF ensemble model specifications 
 

Since 2005, NOAA/GSD/FAB has run a set 
of time-lagged multi-model ensembles for 
NOAA-HMT forecast applications (Yuan et al. 
2008a).  The time-lagged ensemble members in 
these runs are generated from a set of forecasts 
initialized every 6-hours using NOAA-LAPS, 
and evaluated at the same forecast projection 
time.  Because the initializations of these 
forecasts are in a time-sequential fashion, these 
forecast ensembles contain important flow-
dependent error information in the background 
fields (Lu et al. 2007).  These time-lagged 
ensemble members can be generated via an on-
line cycling along with model forecasts.  
Therefore, neither additional computation nor 
added cost are incurred.  The retrieved 
background error statistics, including error 
variance and covariance, while capturing storm 
activity, remain largely balanced (Kim et al. 
2008).  This situation-dependent feature of 
background error covariances is crucial for a data 
assimilation system for short-range forecast 
applications. In the HMT application, we use 6h 
time-lagged ensembles to be consistent with 
model initialization and forecast configuration.  
Only the closest 3 lagged ensembles are used in 
order to avoid large error contamination due to 
longer model integrations.  This limited 
ensemble size can cause serious rank-deficiency 
problem in the retrieved background error 
covariance matrix.  In order to overcome this 
problem, a combination of time-lagged 
ensembles with a set of mixed physics ensembles 
are used to increase the ensemble size (Yuan et 
al. 2008b). 



The mixed physics ensemble consisted of 
simulations performed by using Weather 
Research and Forecasting (WRF) numerical 
model with both Advanced Research and 
Forecasting (ARW) and Non-hydrostatic 
Mesoscale Model (NMM) dynamical cores. The 
integration domain covered a region of roughly 
500x500km centered over central California 
(Fig. 1). For each event and for the WRF-ARW 
simulations the following microphysical schemes 
were used: Ferrier et al. (2002), Thompson et al. 
(2004) and Schultz (1995). The WRF-NMM 
simulations were performed by using Ferrier 
microphysics. For both dynamical cores and all 
microphysics the non-local mixing YSU PBL 
scheme (Noh et al. 2003) (an improved version 
of the MRF PBL scheme; Troen and Mahrt 
1986) was used. 

Fig. 3 provides a measure of model 
performance during IOP 4. On it are plotted a 
common precipitation verification metric, the 
equitable threat score (ETS) for ensemble and for 
a multi-scale analysis based completely on gage 
observations. The strategy used to produce 
adequate sampling (183 pairs) for meaningful 
scores is described in the next section, as is the 
selection of verification gages. Essentially, it 
amounts to aggregating statistics over eight 6h 
periods and several separate sets of withheld 
gages. For this episode of heavy precipitation, 
the most meaningful thresholds for the ETS 
comparison are those greater than .25 in. It is 
clear that the model forecasts perform well, 
obtaining larger (better) scores than the gage 
analysis at most of the thresholds. 

 
FIG. 3. Equitable threat scores (ETS) for two versions 
of the multi-grid gage analysis (STMAS; see text) and 
a WRF model ensemble mean forecast (ens) 
constructed from three lagged members and four 
model configurations. See text for a description of the 
selection of verification datasets. The continuous lines 
indicate interpolation to the exact location of 
verification gages; the points matched gage locations 
with the closest grid point. 
 
c.  Data and assessment strategy 

 
As observational input to our data 

assimilation technique, we use 6h accumulated 
precipitation at operational hourly gages 
available from the Hydrometeorological 
Automated Data System (HADS) managed by 
the Office of Hydrology of the National Weather 
Service. These data are first screened by a set of 
automated daily quality control procedures 
(details available at http://www-
frd.fsl.noaa.gov/mab/sdb/readme.txt). For the 
research diagnoses shown here the gage 
observations were then manually screened for 
possible errors not captured by the automated 
algorithms. However, given the difficulty of 
maintaining gages in good working order under 
the extreme conditions of terrain, elements, and 
heavy precipitation encountered during storms, it 
is likely that inaccuracies still exist in the gage 
measurements. The distribution of the full gage 
set in the ARB domain (Fig. 4, top middle panel) 
is not dense, but it is reasonably well distributed 
across the domain except in the east-central part 
and in the southwest corner. During each of eight 
6h periods included in our analyses, the set of 
gages that survived both sets of screening 
numbered about 25. 

To establish independent sets of gages for 
verification purposes, we have chosen to 
designate a set of verification gages for each of 
several separate analysis runs by withholding a 
small number of gages from each run. The 
locations of these gages are shown in Fig. 4; for 
the five runs shown, they number between three 
and five gages during each time period. This 
resulted in  183 verification pairs from the five 
initial runs and the eight time periods. Given the 
general similarity of the comparison analyses in 
the left column, which have been produced by 
the Space and Time Mesoscale Analysis System 
(STMAS, Xie et al. 2005), which applies a 
multi-scale analysis technique using only the 
gages shown, it appears that the analyses were 
not greatly impacted by the small number of 
withheld gages. 
 
4.  Results from IOP 4 

A set of initial baseline results from IOP 4 
are shown in Fig. 5. The optimal QPE field 
(hereafter referred to as “QPE”) in this case has 
been constructed from all gages. Of the three, 
there is greater similarity between the ensemble 
mean forecast and the optimum QPE field, 
especially in the east-west oriented features. As 



in previous discussion of Fig. 1, there appears to  

 
FIG. 4. Analyses and gage observations of 
accumulated precipitation for 6h period ending at 
0000 UTC 1 January 2006 in the ARB domain. Left 
column displays multi-scale analyses (STMAS; see text 
for explanation) produced with all gages (top row) 
and five reduced gage sets. The gage observations 
used in the analyses are shown in the center column, 
and the gages withheld from the analyses for each of 
the five sets are in the right column. The upper right 
analysis displays the Stage IV radar/gage estimates 
for this period. Units on the color legends are in mm. 
 
be greater detail (that is, more power at smaller 
spatial scales) in the forecast and QPE field than 
in Stage IV. In general, the Stage IV analysis is 
considerably smoother than the others. The 
optimum QPE also seems to have captured the 
finger of minimum precipitation (as indicated by 
gage observations) along the southern boundary 
of the domain better than either the Stage IV 
analyses or the WRF forecast. Another general 
impression is that the ensemble mean forecast 
overpredicts precipitation over much of the 
domain. 

Two of the runs with withheld gages are 
shown in Fig. 6. As also appeared to be the case 
in Fig. 4 for the STMAS gage-only analyses at a 
later time, there is general similarity between 
these two runs in both the STMAS and QPE sets, 
a similarity that extends to the other three runs. 
A significant difference in smoothness and detail 
is also clearly seen between STMAS and the 
optimal QPE, which at this time has a striking 
east-west pattern. The STMAS analyses seem to 

retain larger values over the eastern domain 
boundary (the region including Lake Tahoe) than 
the optimal QPE. 
 

 
FIG. 5. Optimum precipitation analysis (QPE; top), 
Stage IV (middle), and WRF ensemble mean 6h 
forecast (bottom) valid at 0600 UTC December 31 
2005 in the ARB domain. Color-coded circles are 
gages included in the QPE analysis. Legends are in 
units of mm. 
 

While Fig. 6 displays a time period for 
which the optimal analysis performs well (at 
least qualitatively), other time periods and 
computational parameters can give worse results.  
For instance, a QPE plot during an earlier 6h 
period of IOP 4 when light general rain was 
falling over the domain (Fig. 7) exhibits large 
and apparently spurious precipitation maxima. 
Part of the problem in this case is likely traceable 
to a poor forecast; the ensemble mean is late 
getting the precipitation started, with the result 
that predicted rainfall is too small over most of 
the domain. This poor forecast in turn produces 
inaccurate error covariances and a poor optimal 
QPE field. Other factors may also be present, 
including the proper determination of weights for 
the climatological error covariances that are 
applied in the computations that lead to the QPE 



analyses, and the best selection of lag times. We 
will discuss these possibilities in more detail in 
the conclusions. Although our preliminary 
sensitivity tests have not shown this to be 
universally true, it does appear that the optimal 
QPE computations encounter greater difficulty 
for scenarios with lighter and more general 
rainfall. 

 
FIG. 6. Gage-only (STMAS; top row) analyses and 
optimal QPE (bottom row) for two sets of analyses o
6h precipitation ending at 0000 UTC 12 December 
2005 in the ARB domain. Top row show locations of 
gages used in the analyses; bottom row displays gag
withheld from analys

f 

es 
es for later use in verification. 

egends are in mm. 
 
L

 
FIG. 7. STMAS and optimal QPE analyses (top and 
middle), and WRF ensemble mean forecast (bottom) 
for 6h precipitation ending at 1200 UTC 30 December 
2005. Legends are in mm. Analyses gages are shown 
for the STMAS analysis and WRF forecast, and with-
eld gages are shown for the optimal QPE analysis. 

 

ts 
at are roughly equal, while the STMAS 

correlation is well below that of the other two. 
 

h

With five sets of analyses during eight 6h 
periods, and 3-5 withheld gages for each, it is 
possible to compute quantitative statistics and 
verification scores with 183 verification gage 
precipitation observations matched with 
STMAS, optimal QPE, or ensemble forecast grid 
points. The scatter plot of Fig. 8 provides a 
general overview of the observation pairs that 
will make up these score computations. The 
forecast ensemble mean rainfall points show a 
strong tendency to appear above the one-to-one 
line of the verification observations, an 
indication of over-prediction. Both the STMAS 
and optimal QPE points generally straddle the 
line (that is, show less sign of overall bias), with 
the QPE points showing less scatter about that 
line than those for the STMAS analyses. There 
are a few QPE outliers that may account for 
some reduction in the correlation values; see for 
instance the QPE point with 50 mm precipitation 
that matches to a gage value of less than 10 mm. 
Overall, the ensemble forecast precipitation and 
the optimal QPE have correlation coefficien
th

 
FIG. 8. Scatterplot of verification gage observations 
(horizontal axis, mm) against nearest grid point values 
of STMAS gage-only analyses (red), 12-member 
ensemble mean WRF forecasts (blue) and optimal 
QPE analyses (green) for 8 6h periods during IOP 4 

also
(horizontal axis, mm). Spatial correlation values are 

 shown. 
 

The IOP 4 domain-averaged precipitation 
rates and error estimates of Fig. 9 reveal, first, 
that optimal QPE and STMAS are indeed not 
biased as compare to overall verification gage 
averages. WRF forecasts, on the other hand, 
show a full 6 mm large bias over this IOP. While 
the mean absolute error between the ensemble 
mean and gages, and between STMAS and 
gages, is about the same, for QPE it is 
significantly less. Similarly, the root mean 
square error for QPE is also well below that of 
STMAS or WRF forecasts. This improved 



performance for optimal QPE is reflected also in 
the equitable threat scores (ETS) of Fig. 10. For 
the range of thresholds most meaningful for this 
heavy rain event, (between 0.25 and 1.5 in), the 
QPE ETS is larger than (or in one case 
equivalent to) the other two, and occasionally is 
a full point better either of them. 

 
FIG. 9. ARB domain-average 6h rainfall (left bar 
cluster), mean absolute error (middle) and root-mean-
square error (right) for all verification pairs during 
IOP 4. The black bar indicates straight average 

cluding all gages in the domain; other colors are as 
indicated in the legend. 
 

in

 
FIG. 10. Equitable threat scores (ETS) computed at 
erifying gage locations for the analyses and forecasts 

indi

 better at retaining the features of 
the precipitation field that result from terrain 
interactions. 

v
cated. 

 
Besides quantitative scoring, another 

assessment of comparative analysis value can be 
a determination of the detail revealed by the 
analysis. The four panels of Fig. 11 show the 
spatial power spectrum of the three analyses and 
the WRF ensemble mean forecast for one time 
period inside the ARB domain. The most striking 
features on the spectra are the peaks near 40 km, 
which we interpret as the general east-west 
upslope signal, and another near 12 km, which is 
roughly the distance between the east-west-
oriented terrain ridges in the domain and 
between the analysis maxima noted previously in 
the ensemble mean forecasts and in the optimal 
QPE fields (Figs. 1 and 6). If the 12 km spectral 
peak is a reflection of these closely-space ridges, 

then it is clear that the forecast and the optimal 
QPE perform

 
FIG. 11. Spectral estimates for precipitation totals for 
6h period ending 0000 UTC 31 December 2005 
during IOP4 for (clockwise from upper left): Stage IV 
precipitation estimates (ST4), optimum analysis 

PE), gage-only multi-scale analysis (Gage), and 

5. C

(Q
WRF ensemble mean (ENS).   
 

onclusions and Further Research 
 

In general, this case study demonstrates that 
combining high-resolution ensemble forecasts 
with gage data using an optimal estimation 
methodology can successfully produce high-
resolution QPE over a mountainous river basin 
that is superior to gage-only analyses (as 
measured by quantitative verification scores 
using withheld gages). However, it appears that 
occasionally bad error covariances from poor 
ensemble forecasts or other causes can result in 
spurious extreme rainfall in the QPE fields. 
These results suggest that further investigation of 
the forecast skill of ensemble forecasts is needed. 
Other important subjects for future research 
involve the specification of computational 
parameters in the optimal analysis methodology. 
For instance, sensitivity studies already 
performed demonstrate that when error 
covariances derived from scenario-specific 
model climatology are strongly weighted, the 
root mean square errors of the QPE fields are 
smaller (Fig. 12). The figure also shows that for 
low weightings, there is a dramatic dependence 
on the length of forecasts (i.e., number of lags). 
On the other hand, the QPE analysis is less 
sensitive to the inclusion of more time-lagged 
members when the model climatology weights 
are larger. The idealized parameter space 
diagram demonstrates this general movement 
toward better analyses with weighting increase 



and forecast length decrease. More sensitivity 
tests of this kind are required before the best 
combination of parameters can be specified. An 
additional conclusion to be drawn is that careful 
qu  control of gage data is critical for 
accurate QPE analyses. 
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FIG. 12. (a): Root-mean-square errors (RMSE) during 
IOP 4 for different combinations of model time lag 
ensemble members (1-3 6h periods) and 
climatological error covariance weightings (0.1 to 
0.9; coefficient alpha in Section 3). (b): Idealized 
schematic parameter space diagram for model time 
lags and model climatology weighting. The ‘X’ 
symbols on both panels indicate the set of parameters 
used in verification computations and analyses in 
previous figures; the 
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oved analyses.  
 

Other future plans include extension of this 
research to other IOPs during the HMT project 
and to a larger region including more river basins 
in the 3km model domain to capture a larger 
sample set of observations. Both verification 
scores and the spectral analysis results can be 
better confirmed by this improved sampling. 
Other data sources such as radar observations 
during the HMT project can be added to the QPE 
analysis. Possibly the inclusion of radar data can 
help confirm the validity of the small-scale 
ridge-valley circulations implied by the ensemble 
forecasts and the precipitation estimates, as well 
as by the spectral analyses. The QPE scheme will 
be examined for different ensemble 
configurations, such as combinations of various 
physics options and multiple models. With the 
present results in mind, a further question that 
can be addressed is this: If we assume a given 
QPE field is truth, is it possible to design a rai

narrows the analysis 
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