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1. INTRODUCTION*

 
Attribution is a well-founded field of studies in 

climate science and reliable results of this activity have 
been obtained by means of both dynamical 
estimations (see IPCC 2007, for a recent review) and 
neural network (NN) modeling (Pasini et al. 2006). 
These studies aim at understanding which are the 
major (natural or anthropogenic) external forcings 
influencing the mean values of some meteo-climatic 
parameters, such as temperature or precipitation, at 
global or continental scale. 

When passing at regional or local scale, however, 
climate natural variability can mask any direct link 
between global forcings and temperatures at these 
scales, so that the influence of circulation patterns is 
the key element for “attributing” climate at this spatial 
resolution. Of course, an important field of research is 
represented by studies which aim at understanding 
how these circulation patterns are affected by changes 
in global external forcings. 

In any case, a regional/local correct climate 
reconstruction is possible only if one is able to 
understand how the several circulation patterns 
influence the main climatic variables at these scales 
(first step) and if Global Climate Models (GCMs) show 
their ability in simulating the behavior of these patterns 
during the last decades (second step). 

In this paper we deal with the first of these two 
steps. In particular, by limiting ourselves to consider 
data about the Italian Alpine region, we try to 
understand by which circulation patterns we are able 
to reconstruct mean annual and seasonal 
temperatures in this region. In doing so, we apply 
neural network modeling as a tool which permits to 
achieve fully nonlinear relationships between 
circulation patterns and the temperature itself. 

In what follows we will briefly describe the data 
sets (section 2) and a NN tool developed during the 
last years (section 3). Then, after some preliminary 
hints obtained in terms of bivariate linear and nonlinear 
analyses, the NN modeling will be applied in order to 
assess which combination of patterns leads to the best 
reconstruction results for temperatures (section 4). 
Finally, brief conclusions will be drawn and prospects 
of further study will be envisaged in the last section. 
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2. DATA 
 
Recently, a homogeneized data-base, 

characterized by very long time-series (≈ 200 years), 
has been completed and refers to the so-called 
“Greater Alpine Region” (Auer et al. 2007). In what 
follows we use the freely available data about the SW 
region of this Alpine data-base (see Figure 1). 

 

 
 

Figure 1. A division in climatic regions of the Greater 
Alpine Region. Data about the SW region shall be 
considered in the present paper. 

 
It is worthwhile to stress that attempts at 

assessing the influence of large-scale atmospheric 
circulation on climate variability in this region have 
been performed by Efthymiadis et al. (2007). 

In the present paper a more accurate (and fully 
nonlinear) analysis will be performed by consideration 
of data about 8 circulation patterns in the last 50 years: 

- North Atlantic Oscillation (NAO), 
- East Atlantic pattern (EA), 
- Arctic Oscillation (AO), 
- Scandinavian pattern (SCAN), 
- East Atlantic/West Russian pattern (EAWR), 
- Atlantic Blocking Index (ABI), 
- European Blocking Index (EBI), 
- El Niño Southern Oscillation (ENSO). 
These data about patterns are usually synthetized 

by indices which can be easily used for studies of 
influence.  

The first 5 indices are freely downloadable by 
www.cpc.noaa.gov, ABI and EBI data have been 
courtesly supplied by ARPA-SMR, Bologna, Italy, and 
data about ENSO have been obtained by 
www.cru.uea.ac.uk and then transformed in monthly 
anomalies in order to render them homogeneous with 
other data. 

http://www.cpc.noaa.gov/
http://www.cru.uea.ac.uk/
mailto:pasini@iia.cnr.it


 

3. THE NN TOOL 
  
A NN tool for both diagnostic characterization and 

forecast in complex systems has been developed 
some years ago (Pasini and Potestà 1995). Since that 
date it has been applied to diagnostic and prognostic 
problems in the boundary layer (Pasini and Potestà 
1995, Pasini et al. 2001, 2003a,b, Pasini and Ameli 
2003) and recently, as cited above, also to the 
analysis of climatic data (Pasini et al. 2006, Pasini 
2009). 

As far as the kernel of this NN tool is concerned, 
it has been extensively described elsewhere (see, for 
instance, Pasini et al. 2003a). Here, it is sufficient to 
note that the NNs adopted are feedforward and 
characterized by a backpropagation training endowed 
with gradient descent and momentum terms in the 
rules for weights updating. Furthermore, an early 
stopping method is also available. In the present 
study we adopt networks endowed with sigmoids in 
the unique hidden layer and sigmoids or linear 
functions in the output layer. 

Together with these quite standard features 
(see Hertz et al. (1991) and Bishop (1995) for two 
reviews on these topics), this tool provides us many 
training facilities, useful for handling historical data 
from complex systems.  

In particular, we try to estimate mean temperature 
values from indices data, but, due to the quite short 
time series available for circulation indices (50 years), 
each temperature value is estimated at a time after the 
exclusion of the correspondent inputs-target pattern 
from the training set used for fixing the connection 
weights. Here we use a facility of our tool, the so called 
“all-frame” or “leave-one-out” cross-validation 
procedure: it is simply sketched in Figure 2, where our 
total set of patterns is divided in two subsets. The 
white squares represent the elements (patterns) of our 
training set, while the gray square (one single element) 
represents the validation set. The relative 
compositions of training and validation sets change at 

each step of an iterative procedure of training + 
validation cycles. A “hole” in the complete set 
represents our validation set and moves across this 
total set of patterns, thus permitting the estimation of 
all temperature values at the end of the procedure. 

In this paper we adopt the “all-frame” procedure 
just described, for both the neural model and the multi-
linear regression. 

 

 
 

Figure 2. A sketch of the “all-frame” or “leave-one-out” 
cross-validation procedure. 

 
4. MAIN RESULTS 
 

The first preliminary step in our investigation is to 
assess which circulation patterns may be the most 
influencing on temperature, in a bivariate manner. 
Thus, we perform a bivariate analysis in linear and 
nonlinear terms, via calculation of the Pearson 
coefficient R and of its nonlinear analogue Rnl, the so-
called Correlation Ratio (see Marzban et al. 1999, for 
its formula and calculation). 

Rnl allows us to understand if some indices, which 
do not show high linear correlation with temperature, 
can however be influent on it by means of more 
complex and nonlinear relationships. 

 
 

 
Table 1. Calculation of R and Rnl (indices vs. T) for several periods. Extended winter = December to March. 
Bolded values indicates linear correlations which are founded significant with a two-tails Student test. Rnl often 
shows an interval of values for including several histograms which are compatible with its calulation method. 

 



 

 
 

Table 2. Linear and nonlinear bivariate cross-correlations (ENSO vs. T). 
 
Some considerations from Tables 1 and 2: 
- both AO and EA are correlated significantly 

in almost all seasons, while NAO seems to 
be important just in winter and extended 
winter; 

- sometimes, indices which show low linear 
correlation are endowed with a higher 
correlation in the calculation of Rnl: this may 
induce us to consider these variables as 
important in a fully nonlinear analysis of 
influence on T; 

- the blocking indices show interesting 
anticorrelations during the extended winter; 

- ENSO shows negligible correlations in the 
same season, but significant anti-cross-
correlations. 

After this preliminary bivariate analysis, our aim is 
to try to reconstruct the behavior of T in various 
periods by means of combinations of these indices. 

In doing so, due to the limited number of data at 
disposition, we cannot build a network including all the 
indices as inputs, because we should fall into 
overfitting conditions. Thus, just few indices are 
considered as inputs (exactly, combinations of 3 or 4 
indices) and a maximum of 4 neurons are inserted in 
a single hidden layer.  

In what follows we show just the best results 
obtained in this attempt. These results (calculated on 
the validation set) are summarized in Tables 3 and 4, 
where the error bars related to the NN performance 
come from ensemble runs of the networks starting 
from different random intial weights, so that the 
network itself is able to widely explore the landscape 
of the cost function in this local backpropagation 
training method. The interval indicates ± 2 standard 
deviations. 

 

 
 

Table 3. Results of neural and linear reconstructions starting from combinations of 3 circulation patterns (bolded 
values indicate significant improvements of NN performance if compared with linear one). 

 



 

 
 

Table 4. As in Table 3, but for combinations of 4 circulation patterns. 
 
As just shown from bivariate analysis, even the 

NN reconstruction shows that the influence of AO and 
EA are very important almost in all seasons. Now, the 
nonlinear reconstructions from 4 indices appear better 
than linear ones in all cases, except autumn. In any 
case a major percentage of variance is explained by 
our NN model. 

 It is worthwhile to note that, in order to achieve 
the best results, networks with sigmoids in the output 

layer must be chosen for intermediate seasons 
(spring and autumn), while a linear transfer function 
must be considered for other periods. This fact 
suggests the existence of stronger nonlinear 
relationships between indices and temperature in 
intermediate - more complex - seasons, if compared 
with other periods. 

Finally, Figure 3 shows the time series of T on 
extended winters and its NN good reconstruction. 

 
 

 
 
Figure 3. Perfomance of temperature reconstruction on extended winters by a single run of NN modeling. 

 



 

From this Figure, we can appreciate how much 
our analysis is able to catch the interannual variability 
of T. Furthermore, it is evident the lack of a consistent 
bias in the reconstruction, while, even in cases of 
similar values for Pearson coefficient in Tables 3 and 
4, linear reconstructions often show a large value of 
bias. 

Further analysis may be performed in terms of 
some indices of performance built on thresholds and 
contingency tables, such as POD, FAR, HSS. This 
analysis, not shown here, confirms the superiority of 
our NN method (with respect to multilinear regression), 
as far as the reconstruction of time series of T is 
concerned.  
 
5. CONCLUSIONS AND PROSPECTS 
 

In short, our research, even if quite preliminary,  
contributes to understand how circulation patterns 
influence temperature on the SW portion of the 
Greater Alpine Region. Of course, this investigation 
should be extended to other variables, such as 
precipitation, if we would like to achieve a more 
complete characterization of climate variability in this 
region: this is a concrete prospect of further study. 

Thus, this kind of studies is very useful for 
establishing major influences on regional temperatures 
and, therefore, makes available a crucial information 
for a downscaling activity, too. In fact, in doing so, we 
have to choose those GCMs which are able to 
reconstruct the behavior of these particular circulation 
patterns. Only in this manner we could achieve a 
correct downscaling for successfully reconstructing 
climate at regional level and possibly supplying reliable 
future scenarios at this scale. 
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