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1. Introduction 

 *The amount and distribution of moisture are 
among the most important factors affecting the pre-
diction of mesoscale and storm-scale weather (e.g., 
McPherson et al. 1997), particularly with regard to 
quantitative precipitation forecasting (Emanuel et al. 
1995; Fritsch et al. 1998; Droegemeier et al. 2000). 
High-resolution measurements of moisture within 
the boundary layer (BL) are even more important 
because the BL moisture is the essential fuel for 
convection and precipitation. 

Affected by often inhomogeneous lower boundary 
forcing and by BL physical processes involving, e.g., 
convective eddies and rolls, BL moisture has high 
spatial and temporal variability (Weckwerth et al. 
1996; Weckwerth and Parsons 2006) but is poorly 
characterized by existing observing platforms 
(Weckwerth et al. 2004). Typical surface observation 
networks are too coarse to resolve the fine-scale 
structures. Furthermore, most remote sensing data, 
e.g., satellite measurements of water vapor in cloudy 
regions, are limited in regions of greatest interest. 

Ground-based GPS receiver networks, while 
available in all weather conditions, provide only 
path-integrated quantities and lack resolution in the 
BL. In fact, the GPS-slant-path water vapor meas-
urements are most effective at the mid to upper lev-
els where slant paths intercept (Liu and Xue 2006). 
Therefore, high-resolution moisture measurements 
within the BL can fill the data gap and have the po-
tential to significantly improve QPF.  

It has been shown in recent years that 
high-resolution near-surface water vapor measure-
ments can be derived from radar-based refractivity 
measurements utilizing returns from fixed ground 
targets (Fabry et al. 1997; Weckwerth et al. 2005). 
Effective assimilation of such observations into 
NWP model is an area that require significant 
amount of research. The actual impact of such ob-
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servations on storm-scale NWP also needs to be 
investigated, and this is most effectively done in 
collaboration with the instrumentation scientists, 
who in this case that radar engineers and radar me-
teorologists who have expertise in radar data proc-
essing starting from the signal processing level. Be-
fore testing data from a new platform, it is often 
valuable to perform experiments using simulated 
data, through Observing System Simulation Ex-
periments (OSSEs, Lord et al. 1997) where observa-
tions as well as their error properties can be simu-
lated and systematically evaluated. 

In this paper, we describe an effort to develop a 
capability to analyze refractivity-derived measure-
ment of near surface moisture based on the varia-
tional method, and we test such a capability using 
simulated refractivity and phase change data first. A 
previously modeled convective initiation case from 
the 2002 International H2O Project (IHOP_2002) 
field experiment is chosen to serve as the truth. 
Simulated refractivity and phase change data are 
first created using a realistic radar simulator, and 
they are then analyzed using a specially designed 
2DVAR system. The quality of the analysis is evalu-
ated by comparing against the true moisture field. 

The rest of this paper is organized as follows: sec-
tion 2 describes background and generation of 
simulated radar phase change observations and sec-
tion 3 introduces our 2DVAR analysis method. Re-
sults from analysis experiments are presented in 
section 4. Further discussions on the effectiveness of 
our scheme are given in section 5 through sensitivity 
experiments. Summary is given in section 6, to-
gether with a plan for future work. 

 
2. Radar Refractivity and Phase Change Obser-
vations 
 
a. Background 
 
 In vacuum, an electromagnetic wave travels at the 
speed of light (c = 3×108 m s-1). In the atmosphere, 
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however, the wave is slowed by a factor equivalent 
to the index of refraction of the air, denoted by n. 
The refractivity, N, is a convenient term related to 
the refractive index and is defined by Bean and 
Dutton (1968), 
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where T is the temperature in degrees Kelvin, P is 
the total pressure and Pw is the partial pressure of 
water vapor. If there are no major changes in P and 
T, from (2.1), most of the spatial variability in N 
results from Pw (equivalent to water vapor). 

An innovative technique was developed by Fabry 
et al. (1997). It is simple to show that the phase of 
the backscattered radar signal after coherent detec-
tion is related to the path-integrated refractive index 
by the following equation, 
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where f is the radar transmitter frequency and r is 
the distance between the radar and ground clutter. As 
is evident from (2.2), the phase of the returned sig-
nal wraps around 2π approximately every half wave-
length, which is 5 cm for an S-band radar, making 
the use of phase problematic for estimation of n. The 
original solution to the problem proposed by Fabry 
et al. (1997) is based on the use of a homogeneous 
reference observation. Reduction in phase wrapping 
is obtained by using the phase difference between a 
so-called reference time and the measured observa-
tion time (Fabry et al. 1997). The reference time 
should be chosen when the temperature and humid-
ity fields could be assumed homogeneous over the 
field of view of the radar. 

Given these two measurements of phase, the dif-
ference will be given by the following equation, 
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where φm(r) and φref(r) denote the measured and ref-
erence phase values, respectively. An important 
point is that the phase will show a 2π -wrap less 
often since it is based on the refractive index differ-
ence. This difference will be much smaller than the 

actual refractive index which is close to unity. Of 
course, the drawback is that we have to conduct the 
reference observations which are based on the ho-
mogeneity assumption. Nevertheless, the phase 
wrapping problem will be mitigated. 

Again, we should emphasize that the refractive 
index change in (2.3), is integrated from the radar 
site to the target range. By taking the phase differ-
ence at two range values along the same radial 
where R2 > R1, we have 
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Assuming the refractive index change is constant 
over the range from R1 to R2,  
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where ( ) ( ) ( ), ,i i m i refn R n R t n R tΔ = − . 
At this point, we have the refractive index change 
from the time of the reference observations. If the 
refractive index could be calculated from surface 
meteorological stations at the reference time, the 
actual value of n could be obtained. 

Four major drawbacks exist with the original 
technique of Fabry et al. (1997): 

 
(1) In order to mitigate the severe phase wrapping 

effect, the difference of a reference phase map 
with the measurement phase map was proposed. 
In addition to the logistically problems of ob-
taining a reference map, homogeneity assump-
tions over the observed field are not well justi-
fied under most conditions and certainly are dif-
ficult to validate. 

(2) Complexity of the algorithm created numerous 
dependencies on individual radar platforms, re-
ducing the overall impact of the technique on 
the meteorological community. 

(3) Since the actual locations of the clutter targets 
are not known, it must be assumed that R2 and 
R1 are centered in their respective resolution 
volumes, which introduces a possibly signifi-
cant error in the derivative operation in the final 
step of the algorithm (2.5). 

(4) Measurements are limited to the near-surface. 
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Therefore, refractivity fields above the altitude 
of ground clutter targets cannot be estimated. 
Given the importance of moisture aloft for con-
vective initiation, this is an important limitation. 

 
If Δn field has a large gradient between R1 and R2, 

the phase wrapping occurs. 
 

( ) ( ) ( )1 2 2 1, 2R R R Rφ φ φ πΔ = Δ − Δ ≥  
Generally, the observable phase difference is 
mod(Δφ(R1,R2), 2π). The phase wrapping is likely to 
occur, where the distance between two targets is 
larger, where there is a sharp gradient of refractivity 
difference between two targets and when the time 
difference between analysis and reference is larger 
In that case, we need special care for assimilating 
the phase difference between two targets. This issue 
is discussed in section 5. 
 
b. Generation of simulated observations 
 

Building on above knowledge, simulated refrac-
tivity and phase change data are created using a ra-
dar simulator for Observing System Simulation Ex-
periments (OSSEs). The model used to produce the 
“true” field is the Advanced Regional Prediction 
System (ARPS, Xue et al. 2003) which is a nonhy-
drostatic atmospheric model formulated in a gener-
alized terrain-following coordinate. Refractivity and 
phase change observations for OSSEs are created 
from a forecast from Xue and Martin (2006). This is 
for a dryline case that occurred on 24 May 2002 
over the southern Great Plains of United States dur-
ing the 2002 International H2O Project 
(IHOP_2002) field experiment (Weckwerth et al. 
2004). The ARPS model was initialized using analy-
sis of the ARPS Data Analysis System (ADAS, 
Brewster 1996) at 1800 UTC 24 May 2002, and was 
integrated for 6 h. A 700 km × 400 km model do-
main at 1 km horizontal resolution was used (Fig. 1). 
For our simulation experiments, we assume that the 
surface fields from their simulation are located at a 
constant height surface, i.e., on a completely plat 
ground. These surface fields are used for the simula-
tion of φΔ (R1,R2), which are considered the raw 
data. 

An S-band radar (λ = c/f ~ 0.1 m) is assumed and 
placed on x = 230 km and y = 350 km of the domain 
shown in Fig. 1. For S-band radar, the detective 
range of N is within about 50 km radius of the radar.  

 
Figure 1: 2D fields of the water vapor (a), and simu-
lated refractivity (b), at the surface at 1800 UTC 24 
May 2002, the reference time. Black square mark 
denotes the radar location and open box denotes the 
area that is shown in Fig. 2.
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Figure 2: Simulated observations at the surface at 1900 UTC 24 May 2002, 1 hr after the reference 
time; (a) is the water vapor field, (b) is the N field, (c) is the phase difference between two targets 
for the case of uniform ground target case (hereafter CTL) and (d) is the phase difference for the 
case of for the case of random target distribution, RND (see Table 1). 

 
Two types of ground target distributions are consid-

ered in this study:  
(1) Uniform: Ground targets are distributed along 

the azimuth up to a 50 km range with uniform 
distances of 250 m, equaling the gate-spacing. 

(2) Random: Ground targets are distributed along 
the azimuth from the radar to 50 km with ran-
dom distances between 0.25 and 4 km. 

In this study, the reference time is set at 1800 UTC 
24 May 2002. 

Figure 1a shows the water vapor field at 1800 
UTC, the reference time. A distinct dry line is found 
from south to north. Figure 1b shows the simulated 
refractivity field, N, at the same time. N field has 
quite similar pattern as the qv field because it is most 
sensitive to qv. Often for forecasting purpose, N field 
is used as a reasonable proxy of qv. 

Figure 2 shows the qv field and simulated N and 
phase change (between two ground targets) observa-
tions at 1900 UTC, 1 hr after the reference time. For 
the case of CTL, the distribution of the simulated 

phase difference field is similar to the simulated N 
and none of the phase difference between two tar-
gets has been subject to phase wrapping (-0.6 < φΔ  
< 0). For the case of RND, the phase difference is a 
function of the variable target difference so the pat-
tern is none longer clear. In this case, phase wrap-
ping often occurs where the distance between two 
targets is close to 4 km (-8 < φΔ  < 0). Although 
we should care about this phase wrapping issue, this 
matter is not considered in the case of RND, i.e., it is 
assumed that no phase wrapping has occurred even 
though in reality it should for some values. We dis-
cuss the issue of phase wrapped data in section 5. 
 
3. Two-dimensional Variational Analysis Method 
 
a. Methodology 
 

In this work, a 2DVAR system is developed based 
on a univariate 3DVAR framework that was devel-
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oped for analyzing GPS slant-path water vapor data 
that includes isotropic and anisotropic recursive fil-
ters (Liu and Xue 2006; Liu et al. 2007).  In this 
study, surface water vapor field is analyzed by as-
similating the phase differences between two targets, 
i.e., φΔ (R1,R2). 

The cost function of our 2DVAR system is de-
fined as 

( ) ( ) ( )a a a
v b v phi vJ q J q J q= +  (3.1) 

where 
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In Eq. (3.1), cost function J is composed of back-
ground constraint term, Jb, and phase difference ob-
servation term, Jphi. qv

a is the analysis value of the 
specific humidity qv at the surface. The correspond-
ing background state vector is qv

b. The background 
term, Jb, measures the departure of the control vari-
able from the background. Here B is the background 
error covariance matrix, which determines how the 
observational information is spread in space. 

The phase difference observation term, Jphi, 
represents the departure of the analysis, calculated 
from qv

a  through the observational operator H, 
from the observations of the phase difference be-
tween two targets. The matrix R is the observation 
error covariance matrix for the phase difference be-
tween two targets, which is usually assumed to be 
diagonal under the assumption that observation er-
rors are not correlated (some of the correlated errors 
can usually be effectively removed through bias 
correction procedures. see, e.g., Harris and Kelly 
2001). In our paper, the magnitude of error variances 
or the diagonal elements of matrix R is much 
smaller than the background error variances and is 
specified. 

The choice of spatial filter coefficients follow Liu 
and Xue (2006) and Liu et al. (2007). As mentioned 
earlier, the background error covariance controls the 
extent to which values at the grid points away from 
an observation are influenced by the observation. 

For isotropic filter, the following Gaussian func-
tion can be used to model B (Huang 2000), 
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where bij are the elements of B, rij is the distance 
between two grid points i and j measured in terms of 
the grid index coordinate, Lr is the de-correlation 
length scale in terms of the grid intervals and is in 
practice often linked to the observation density. σb

2 
is the background error variance, which we assumed 
to be calculated from the actual background error. 

An alternative to Eq. (3.3) is the following ani-
sotropic covariance (Horn and Johnson 1985, p.458 
for Schur product theorem; Riishøjgaard 1998; 
Gaspari and Cohn 1999), 
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where f is a field whose pattern represents that of the 
background error, which we call the error field. In 
this study, f is chosen to be either the true error field 
of the background or a certain estimate of the true 
error. Lf is the de-correlation scale in the error field 
space in units of g kg-1 for our analysis experiments; 
it controls the degree of the anisotropy.  
 
b. Experimental design 
 

In our experiments, 1800 UTC 24 May 2002 is 
chosen as the reference time for phase observations, 
and the moisture field is assumed known at this time. 
Three analysis times at 1900, 2100 and 2400 UTC 
are chosen to investigate the sensitivity of the analy-
sis to time increment from the reference time. The 
larger is the increment, the more is chance the phase 
wrapping. At the analysis times, without any addi-
tional information, we assume the temperature and 
pressure are known and our goal is to analyze mois-
ture from the phase change observations.  

The ARPS model provides the mixing ratio of 
water vapor. The water vapor pressure needed in the 
refractivity formula can be derived using gas law  

w v d vP q R Tρ=               (3.5)  
where ρd is the dry air density and Rv is the vapor 

gas constant. In our analysis, the reference refractiv-
ity field, Nref is calculated from T, P, and qv is set at 
1800 UTC 24 May 2002, and qv at 1800 UTC is 
used as the background value in the background 
term of the cost function. The background refractiv-
ity at each of the analysis times is calculated from qv 
at 1800 UTC and the T and P from the analysis time, 
which are assumed known, as mentioned earlier. 
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4. Analysis experiments 
 

To verify that the minimization procedure of our 
2DVAR system works correctly, we first perform 
analysis experiments using phase difference data 
that contain no observational error, including phase 
wrapping. We mainly focus on the results at 1900 
UTC 24 May 2002. 

 
a. Single observation tests 
 

To better understand the behaviors of 2DVAR 
system, two single observation experiments are per-
formed first. This single observation is a phase dif-
ference between two targets of 2.75 km apart. The 
de-correlation scales Lr and Lf are specified as 3 km 
and 3 g kg-1, respectively. The error level of the 
background is assumed very high in this case; in the 
final analysis is expected to fit the observation very 
closely. 

Figure 3 shows the analysis increments from these 
two experiments. Because the observation is not a 
true point measurement, but an integrated quantity 
along a path, the analysis increment is isotropic filter 
exhibits a shape stretched in the direction of the path. 
The results of the anisotropic filter case (Fig. 3b) are 
similar. The analyzed peak values of the phase dif-
ference have the same value, -7.208, for both iso-
tropic and anisotropic filter, which is very close to 
the observed value -7.217. Because the isotropic 
filter performs almost as well, especially when the 
observations have high resolutions (see later), the 
isotropic filter will be used in the control experi-
ment. 

 
b. Perfect observation experiments 

 
The earlier single observation experiments dem-

onstrate correct behaviors of our analysis system. 
Subsequently, we move to the analysis of the full 2D 
water vapor field from simulated phase difference 
observations. Two experiments are discussed in this 
section. In these two cases, simulated observations 
are ‘perfect’, the observations do not continued any 
errors. The variance of observational error is set as 
2π/100. De-correlation scale Lr and Lf are specified 
as 3 km and 3 g kg-1, respectively. Sensitivity of the 
analysis to the value of the de-correlation scale is 
examined in next section. The first experiment is the 
control experiment, named CTL (Table 1); the dis-
tribution of the ground targets is uniform (see sec-

tion 2), and the 2DVAR uses isotropic recursive fil-
ter. Second experiment RND is the same as CNL, 
except that the data are ‘Random’ (Table 1). 

Figure 4 shows the cost function and the norm of 
the cost-function gradient as functions the number of 
iterations during the minimization procedure for the 
experiment CTL. Significant reductions occur in 
both the cost function and the norm during the first 
20 iterations. The cost function remains relatively 
flat afterwards while the gradient norm continues for 
decrease over the next 50 iterations or so. In all 
cases, we run the minimization algorithm for 100 
iterations, which appear sufficient for the desired 
accuracy. 

The analysis fields for CTL and RND at 1900 
UTC 24 May 2004, 1 hr after the reference time, are 
shown in Fig. 5a and Fig. 5b, respectively. Both 
results are very close to the truth field where the 
observations exist (observations are confined to 
within the 50 km range). The root mean-square error 
(RMSE) and the maximum error (ME) between the 
analysis field and the true field are presented in Ta-
ble 1. The RMSE and the ME are calculated inside 
of the radar detective range. The RMSE for CTL and 
RND are 0.032 g kg-1 and 0.037 g kg-1, respectively, 
indicating good analysis. The ME for CTL and RND 
are 0.190 g kg-1 and 0.228 g kg-1, respectively. For 
reference, the RMSE between the background field 
and the true field is 1.06 g kg-1. Comparing the case 
of CTL with the case of RND, CTL has smaller error 
than RND because of the density of observation. 
c. Sensitivity to de-correlation scale 

The quality of an analysis is closely related to the 
de-correlation scales used in Eqs. (3.3) and (3.4); 
these scales control the spatial extent over which an 
observation increment is spread. Fixed values of Lr 
(3 km) are used in the earlier experiments. Anisot-
ropic filter is not effective in this case so that only Lr 
is set as free parameter to determine the optimal Lr. 
We examine in this section how the analysis quality 
varies with the de-correlation scales, as measured by 
the RMSE between the analysis field and the true 
field. 

Figure 6 shows the overall RMSE (g kg-1) be-
tween retrieved analysis and true field, as a function 
of the de-correlation length Lr. For the perfect case 
(CTL and RND), we see that the optimal 
de-correlation length is equal to three grid intervals 
(3 km). 
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Figure 3: Analysis increments from single observation experiments; (a) is for the isotropic 
filter case and (b) for the anisotropic case. The dashed lines in (b) are the error field f in 
Eq. (3.4), taken as the truth – background here. The contour intervals are 0.5 g kg-1 for 
both fields. Black bold line denotes the path length between two targets 2.75 km apart. 
 
 

 
Figure 4: The variation of the cost function J, (a), and the norm of the gradient ∇J, (b), with 
the number of iterations during the minimization procedure for the case of CTL. 
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Figure 5: 2D analysis of water vapor fields (sold lines) at 1900 UTC 24 May 2002; (a) from 
CTL and (b) from RND. Dashed lines denote the truth field. The contour interval is 0.5 g kg-1.  

 
 
5. Sensitivity experiments 
 
a. Sensitivity to target position errors 
 

The radar used in this study is assumed S-band 
radar earlier. For S-band radar, the resolution of the 
radial direction is 250 m, this is the gate-spacing, so 
that we can not know the exact position of the 
ground target within the gate-grid. This ambiguity 
conducts the target position error because the actual 
measurement of the phase difference is from the 
actual target position, not from the gate. Hence, we 
should consider the target position error. 

The added target position error is assumed as 
target gate 250 / 2r r α= ±  where α is a random num-

ber between -1 and 1 with uniform distribution. It is 
assumed that the phase difference observation, 

( )rφΔ , is from targetr  but it is valid at gater . Fol-
lowing analysis experiments, we perform experi-
ments CTL_PE and RND_PE, which are the same as 
experiments CTL and RND except for the errors 
added to the targets.  

The analysis of CTL_PE and RND_PE are shown 
in Table 1. The RMSE for CTL_PE and RND_PE 
are 0.039 g kg-1 and 0.036 g kg-1, respectively, and 
the ME for CTL_PE and RND_PE are 0.421 g kg-1 
and 0.222 g kg-1, respectively. The ME for both 
cases are increased by adding the target position 
error. The RMSE for both cases, however, scarcely 
change. The sensitivity to the de-correlation scale 
for CTL_PE and RND_PE are shown in Fig. 6. The 

optimal de-correlation length is the same as the per-
fect case and the tendency of the RMSE value is 
similar to the perfect case. From these results, the 
target position error doesn’t affect the analysis sig-
nificantly. 

 
b. Sensitivity to observational errors 

 
All experiments presented so far are not consid-

ered the observational error. In practice, the obser-
vations would not be error-free, so it is important to 
test the sensitivity of the analysis to the observa-
tional errors, in part to test the robustness. The stan-
dard deviations added the simulate observations is 5, 
10, 15 and 20 % of the error free values and the 
added errors are normally distributed with zero 
means. We perform experiments CTL_OE and 
RND_OE, which are the same as experiments CTL 
and RND except for 10 % errors added to the ob-
servations, and CTL_POE and RND_POE, which 
are the same as CTL_PE and RND_PE except for 
10 % errors. 

The analysis of CTL_OE, RND_OE, CTL_POE 
and RND_POE are shown in Table 1. The RMSE for 
CTL_OE, RND_OE, CTL_POE and RND_POE are 
0.045 g kg-1, 0.110 g kg-1, 0.065 g kg-1 and 0.111 g 
kg-1 respectively. The RMSE for RND_OE and 
RND_POE are increased significantly. The RMSE 
for CTL_POE is greater than that of CTL_OE, but 
their value are still small. Figure 7 shows the analy-
sis fields for CTL_POE and RND_POE at 1900 
UTC 24 May 2004. We can see that both analysis 
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fields are still close to the true field even though the 
observational errors are added. Figure 8 shows the 
RMSE between analysis and true field as a function 
of the percentage of observational errors for experi-
ments CTL_OE, RND_OE, CTL_POE and 
RND_POE. For cases of CTL_OE and CTL_POE, 
the observational error does not affect significantly, 
while, for cases of RND_OE and RND_POE, the 
RMSE exhibits larger increase with the amount of 
error. However, the RMSE for RND_OE and 
RND_POE are still small and keep valid value. 

 
c. Sensitivity to the phase wrapping 

 
All experiments presented so far are not consid-

ering the phase wrapping. In the actual observation, 
however, the phase wrapping occurs as shown in Fig. 
2d. The phase wrapping is likely to occur, where the 
distance between two targets is larger, where there is 
a sharp gradient of refractivity difference between 
two targets and when the time difference between 
analysis and reference is larger. 
In our experiments, the case of RND only has this 
issue. To include this issue, we perform experiment 
RND_MOD, which is the same as RND except that 
the original simulated phase difference observation 
is divided by 2π and that remainder is taken as the 
new simulated observation. 

Figure 9a shows the analysis field for RND_MOD 
at 1900 UTC 24 May 2004. We can see that the 
analysis field exhibits quite large value where the 
phase wrapping occurs (see Fig. 2d). From Table 1, 
the RMSE and the ME for RND_MOD are 0.411 g 
kg-1 and 4.876 g kg-1, respectively. Especially, the 
ME for RND_MOD is quite large so that our system 
is completely collapsed where the phase wrapping 
occurs. 

To defeat the issue of the phase wrapping, we 
perform the experiment UNW, which is the same as 
RND except for applied the ‘unwrapping’ process 
which follows the same way as the actual observa-
tional process by Cheong et al. (2007). In the un-
wrapping process, the original simulated phase dif-
ference observation are spatially interpolated into 
every gate spacing and smoothed to get rid of the 
phase wrapping. Figure 9b shows the analysis field 
for UNW at 1900 UTC 24 May 2002. We can see 
that the quite large values in Fig. 9a are improved. 
Because of the smoothing process, it seems that the 
analysis field is also smoothed. However, the RMSE 
and the ME for UNW are 0.141 g kg-1 and 0.999 g 
kg-1, respectively, indicating valid analysis. The sen-

sitivity to the de-correlation scale for UNW and 
UNW_PE, which is the same as UNW except for 
added position errors, are shown in Fig. 6. The op-
timal de-correlation length is equal to eight grid in-
tervals (8 km); this value is different from experi-
ments CTL and RND. It is because that the original 
simulated observation is interpolated and smoothed 
spatially. Figure 12a shows the analysis field for the 
experiment UNW_POE, which is the same as 
UNW_PE except for added observational errors. 
The analysis field seems to be smoothed but still to 
be close to the true field. The RMSE and the ME for 
UNW_POE, 0.152 g kg-1 and 0.946 g kg-1, respec-
tively, still indicating valid analysis. From these 
results, our system defeats the issue of the phase 
wrapping. Furthermore, although the experiment 
UNW_POE includes all errors, the analysis field 
keeps valid information. So our system is valid to 
analyze the water vapor field from the phase change 
observation. 

 
Figure 6: The overall RMSE (g kg-1) between 
analysis and truth field, as a function of the 
de-correlation length Lr. 
 

d. Sensitivity to the time evolution 
 

All experiments presented so far used the simu-
lated observations at 1900 UTC 24 May 2002, 1 hr 
after the reference time. To investigate the sensitiv-
ity to the time evolution of the weather system, we 
performed experiments UNW_POE at 2100 UTC 
and 2400 UTC, 3 hrs and 6 hrs after the reference 
time. The analysis fields for UNW_POE at 2100 
UTC and 2400 UTC are shown in Fig. 10b and 10c.  
By these times, the model simulations have devel-
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oped fine-scale boundary layer convective eddies 
and rolls, and convection was initiated along the 
dryline around 2100 UTC, the moisture fields ex-
hibit much more small scale structures than at 1900 
UTC. For this reason, the moisture field analysis 
RMSE are somewhat larger, at 0.421 g kg-1 and 
0.272 g kg-1, respectively (Table 1). Fig. 10b and c 
show that the analyzed contours still match those of 
the truth reasonably well. In these two cases, the 
background qv used in the cost function is obviously 
more different from the truth at these times than that 
at 1900 UTC. 

 

 

 
Figure 7: 2D analysis of water vapor fields (sold 
lines) at 1900 UTC 24 May 2002; (a) from 
CTL_POE and (b) from RND_POE, both with 
10 % observational error. Dashed lines denote the 
truth field. The contour interval is 0.5 g kg-1. 

 
Figure 8: The overall RMSE (g kg-1) between 
analysis and truth field as a function of the per-
centage of error. 

 
6. Conclusions 
 

A 2DVAR analysis system is developed for ana-
lyzing the 2D water vapor near the surface from 
radar refractivity-related phase change observations. 
Such observations can be obtained by an innovative 
technique initially developed by Fabry et al. (1997); 
the phase of the backscattered radar signal after co-
herent detection is related to the path-integrated re-
fractive index, which is strongly linked to water 
vapor, from the radar to ground targets. In our simu-
lation experiments, uniformly and non-uniformly 
spaced ground targets are considered. An ARPS 
simulation of a convective initiation case, serving at 
the ‘truth’ is sampled using the radar simulator to 
produce realistic refractivity-related phase deference 
observations between ground targets. 

Our 2DVAR analysis system is based on a 
3DVAR framework of Liu et al (2007) that includes 
isotropic and anisotropic recursive filter options. 
2DVAR analysis experiments are conducted using 
the simulated observations and the quality of the 
analyses is evaluated through comparisons with the 
true field. The results are summarized as follows. 
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Figure 9: 2D analysis of the water vapor fields (sold lines) at 1900 UTC 24 May 2002; (a) from 
RND_MOD and (b) from UNW. Dashed lines denote the truth field. The contour interval is 0.5 g kg-1. 

 
 

Table 1: List of experiments. For experiments, MOD: considering the phase wrapping, PE: added posi-
tion errors, OE: added observational errors and POE: added both position errors and observational er-
rors. For Distributions, Uniform: targets distributed every 250 m on one azimuth, Random: targets dis-
tributed between 250 m and 4 km randomly on one azimuth, Unwrapped: targets distributed randomly 
but interpolated every gate spacing and the phase difference is unwrapped. RMSE is the root-mean 
square error between the analysis moisture and the true moisture and Max Error is the maximum abso-
lute error value between analysis and true moisture. RMSE between true and background moisture at 
1900, 2100 and 2400 UTC 24 May 2002 are 1.06, 2.32 and 1.75 g kg-1, respectively. 

 

Experiments Target  
distribution 

Position Errors 
(± 125 m) 

Obs. Errors 
(10 %) 

RMSE 
(g kg-1) 

Max Error 
(g kg-1) 

CTL Uniform No No 0.032 0.190 
CTL_PE Uniform Yes No 0.039 0.421 
CTL_OE Uniform No Yes 0.045 0.243 

CTL_POE Uniform Yes Yes 0.065 0.395 
RND Random No No 0.037 0.228 

RND_PE Random Yes No 0.036 0.222 
RND_OE Random No Yes 0.110 0.745 

RND_POE Random Yes Yes 0.111 0.631 
RND_MOD Random No No 0.411 4.876 

UNW Unwrapped No No 0.142 0.999 
UNW_PE Unwrapped Yes No 0.144 0.832 
UNW_OE Unwrapped No Yes 0.152 1.040 

UNW_POE Unwrapped Yes Yes 0.152 0.946 
UNW_POE 
2100 UTC Unwrapped Yes Yes 0.421 2.381 

UNW_POE 
2400 UTC Unwrapped Yes Yes 0.272 2.251 
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Figure 10: 2DVAR analysis of the water vapor fields 
(sold lines) from UNW_POE; (a) at 1900 UTC, (b) 
at 2100 UTC and (c) at 2400 UTC 24 May 2002. 
Dashed lines denote the truth field. The contour in-
terval is 1.0 g kg-1. 

1) The moisture field analysis produced by our 
2DVAR system with an isotropic recursive filter 
captures the detail structure of moisture field.  

2) Experiments on the sensitivities of the analysis 
to target position ambiguity (uncertain within 
one range gate) errors show that such error does 
not affect the analysis significantly. 

3) Experiments on the sensitivities to observational 
errors are performed. For cases of uniform 
ground target distributions, it is found that the 
observational error does not affect analyses sig-
nificantly, while, for cases of random distribu-
tions, the analyses become worse with the in-
crease in observational errors. Still, the analyses 
remain generally valid. 

4) Our 2DVAR system fails when the observations 
include the phase wrapping. When the data are 
first unwrapped in a separate processing step, the 
analysis can succeed. In the unwrapping process, 
involves spatial interpolation and smoothing of 
the original phase different data therefore the 
analyzed moisture field is smoother. 

 
In our current analysis system, the moisture field 

is the only variable and temperature and pressure 
fields are assumed to be known. In the future, we 
will use multi-variate assimilation methods such as 
the ensemble Kalman filter (EnKF, Evensen 2003; 
Evensen 2006) where moisture, temperature and 
pressure fields will be analyzed simultaneously. 
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