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1. INTRODUCTION: WHAT IS THE RECTI-
FIER EFFECT?

The flux of carbon dioxide (CO2) from the land sur-
face to the atmosphere undergoes a diurnal cycle. Dur-
ing the day, photosynthesis occurs, leading to a net flux
of CO2 from the atmosphere to biomass. During the
night, respiration of CO2 to the atmosphere occurs be-
cause of, e.g., plant decomposition. This oscillating di-
urnal flux of CO2 is more or less symmetric between
day and night, and is roughly sinusoidal (Baker et al.
2003; Davis et al. 2003).

In contrast to the flux, the near-surface time series
of CO2 mixing ratio is often asymmetric. In particular,
the mixing ratio often peaks sharply in the wee hours
of the morning and exhibits a long period of moderately
low values during the day. Rather than being symmet-
ric, the near-surface mixing ratio time series has a trun-
cated sinusoidal appearance reminiscent of a rectified
electrical alternating current (Heimann et al. 1986; Keel-
ing et al. 1989; Denning et al. 1995, 1996a,b, 1999; Yi
et al. 2000).

Given the quasi-symmetry of the time series of CO2

flux, the observed asymmetry of the time series of mix-
ing ratio may at first seem paradoxical. This diurnal rec-
tifier effect results from differences in turbulent mixing
between night and day (Denning et al. 1996b). During
the night, the atmospheric boundary layer is often sta-
ble and shallow, causing CO2 mixing ratio to build up
strongly in a thin layer near the surface. During the day,
the boundary layer is often convective and deep, caus-
ing the deficit in mixing ratio to be diluted over a large
vertical extent. The resulting time-average vertical pro-
file of CO2 has an excess of CO2 near the ground and
a deficit aloft.

The rectifier effect is important in part because of
its effect on inverse model calculations. Inverse models
typically use measurements of CO2 mixing ratio near
the land or ocean surface and infer CO2 flux at the sur-
face. The surface flux, in turn, tells us about sources
or sinks of CO2 within the biosphere or ocean. In
contrast to the highly localized fluxes yielded by direct
measurement, inverse modeling yields average surface
fluxes over broad areas, which is sometimes desirable.
In the past, inverse modeling has been used primarily
to derive CO2 fluxes over continental-scale areas and
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monthly time scales, given near-surface observations of
CO2 mixing ratio at locations far from land (e.g. Gurney
et al. 2002, 2003). However, there has also been inter-
est in inverse calculations over land at sub-continental
scales (Peylin et al. 2005; Bakwin et al. 2004) and di-
urnal or sub-diurnal timescales (e.g. Law et al. 2004;
Braswell et al. 2005).

The rectifier effect influences inverse calculations in
part because it increases the time-averaged CO2 mix-
ing ratio near the surface. If this increase is not taken
into account in a forward model, it may lead to an over-
estimate of a CO2 source or an underestimate of a sink
(Denning et al. 1995, 1996a; Gurney et al. 2002, 2003;
Stephens et al. 2007).

The one-dimensional rectifier effect has been ob-
served and numerically simulated in prior works (e.g.
Chen et al. 2004; Yi et al. 2004). The present paper
develops an analytic, 1D, eddy-diffusivity model of it.
Our primary goal is better conceptual understanding of
the physics of the rectifier effect. However, the model
may also be useful for inexpensive, approximate cal-
culations, particularly analyses of tall-tower measure-
ments of CO2 mixing ratio that are used to invert diur-
nally varying sources and sinks at the surface. Inverse
calculations may be facilitated by the fact that our model
solutions depend only on a single non-dimensional pa-
rameter. Forward calculations may benefit from the fact
that this single parameter can be used to prescribe the
strength of the rectifier effect.

The structure of this paper is as follows. The model
equation and boundary conditions are introduced in
Section 2. Derivations of when these equations yield
rectified solutions are presented in Sections 3 and 4.
An analytic series solution is presented and plotted in
Section 5. An application to inverse modelling is illus-
trated in Section 6. Conclusions are listed in Section
7.

2. MODEL SET-UP

The geometry of the problem is assumed to be a
horizontally uniform layer extending from the ground up
to an infinite altitude. Therefore the problem is spatially
1D in the vertical coordinate. We will use a tilde to de-
note variables having units and use no tilde for dimen-
sionless variables. In contrast, for constants or param-
eters, no tilde will be used, regardless of whether they
are dimensional or dimensionless.

We assume that turbulent transport is adequately
modeled by an eddy diffusivity, K̃. Therefore, the at-
mospheric evolution of CO2 is described by a diffusion



equation for CO2 mixing ratio. We will work in the per-
turbation mixing ratio, c̃(z̃, t̃), from a reference value,
c̃ref . We choose c̃ref to equal the average of c̃(z̃, t̃) over
time t̃ and altitude z̃ that would occur if there were no
source. The diffusion equation is:

∂c̃(z̃, t̃)

∂t̃
=

∂

∂z̃

�
K̃(z̃, t̃)

∂c̃(z̃, t̃)

∂z̃

�
+ S̃(t̃). (1)

Here S̃ is an internal atmospheric source of CO2 that
we allow to vary in time but not in the vertical direc-
tion. Although CO2 does not have a significant chem-
ical source in the atmosphere, S̃ may crudely repre-
sent specified, column-averaged horizontal advection of
CO2.

At the lower boundary (z̃ = 0) we impose a diurnal,
sinusoidal flux of carbon because observed fluxes are
often quasi-sinusoidal (e.g. Baker et al. 2003):

−K̃ ∂c̃

∂z̃

����
z̃=0

= F0 cos(ω0 t̃). (2)

Here ω0 = 2π/(24 hours) is the angular frequency cor-
responding to one day, and F0 is the maximum surface
flux, with units of mixing ratio times velocity. We inter-
pret t̃ = 0 as midnight local time.

At the upper boundary (z̃ → ∞), we impose a CO2

flux of zero:

−K̃(z̃, t̃)
∂c̃(z̃, t̃)

∂z̃

����
z̃=∞

= 0. (3)

We place the upper boundary at infinity in order to sim-
plify the analytic solutions. However, the main varia-
tion in CO2 occurs near the lower boundary, specifically,
within the atmospheric boundary layer, which over land
tends to be shallow at night [O(∼ 100m)] and deeper
during the day [O(∼ 1 km)] (e.g., Fig. 1.7 of Stull 1988;
Yi et al. 2001).

We do not attempt to solve an initial value problem.
Therefore we do not impose any initial condition. In-
stead, we assume periodic forcing and seek periodic
solutions in time.

Now we non-dimensionalize the diffusion equation
and boundary conditions. We choose a diffusivity scale
K0 ≈ 100 to 1000 m2 s−1, a length scale H =
(2K0/ω0)

1/2 ≈ 2 to 5 km, a time scale 1/ω0 equal to
radians per day, and a CO2 mixing ratio of

c0 = F0/(2ω0K0)
1/2. (4)

Then the equation and boundary conditions become

∂c(z, t)

∂t
=

∂

∂z

�
K(z, t)

2

∂c(z, t)

∂z

�
+ S(t), (5)

−K(z, t)

2

∂c(z, t)

∂z

����
z=0

= cos(t), (6)

and

−K(z, t)

2

∂c(z, t)

∂z

����
z=∞

= 0, (7)

where

c = (c̃− c̃ref)/c0, (8)

and K = K̃/K0, t = ω0t̃, z = z̃/H , and S = S̃/(ω0c0).
The choice of length scale introduces factors of 2 into
the equation and boundary conditions but simplifies the
solutions below.

3. WHEN IS THE TIME-AVERAGED PROFILE
OF CO2 UNIFORM WITH ALTITUDE?

Prior works have noted that the rectifier effect stems
from a non-zero temporal correlation between the sur-
face flux of CO2 and atmospheric vertical transport
(Heimann et al. 1986; Keeling et al. 1989; Denning et al.
1996b; Stephens et al. 2000). Although we have not
found a proof of this relationship, we now prove a some-
what related link between the concentration/transport
covariance and the shape of the time-average CO2 pro-
file. In this section, we assume that the solution is time-
periodic and that the time-averaged internal source of
CO2 vanishes, that is, that S

t
= 0.

We investigate the conditions under which the time
average of CO2 is uniform in the vertical, which corre-
sponds to c(z, t)

t
= 0 at all altitudes. That is, we ask,

When is

c(z, t)
t ≡ 1

2π

� π

−π

c(z, t)dt = 0? (9)

Such a uniform profile is associated with an un-rectified
solution.

Larson and Volkmer (2008) show that

K
∂c

∂z

t

= Constant = 0 (10)

at all altitudes, where we conclude that Constant = 0
because the upper boundary condition (7) imposes zero
flux at the top boundary. The result (10) depends only
on the assumptions of 1D transport (5), periodicity, zero
source S(t), and zero flux at the upper boundary (7).
The result holds true for both rectified and unrectified
cases.

If we distinguish the two cases, however, we can go
further. If the diurnally averaged flux is zero (Eq. 10),
then the daytime flux must be equal in magnitude but
opposite in sign to the nighttime flux:

K
∂c

∂z

Day

= −K ∂c

∂z

Night

. (11)

If the transport, here modeled by K(> 0), is greater
during the day than during the night, then ∂c/∂z must
be smaller in magnitude during day than during night,
which suggests a non-uniform (rectified) profile. Larson
and Volkmer (2008) provide a formal proof. A rectified
profile, in turn, corresponds to c(z, t)

t �= 0.



4. WHEN IS THE TIME SERIES OF CO2 PER-
TURBATION SYMMETRIC?

The previous section discussed time-average pro-
files of c(z, t), and particularly the cause of vertically
uniform time-average profiles. This section discusses
periodic time series of c(z, t), and the cause of equal
but opposite values of c(z, t) during day and night, as
would occur in our model for an unrectified solution.

We prove that if c(z, t) is a solution of the diffusion
equation (5) with boundary conditions (6) and (7), and if

K(z, t) = K(z, t+ π) S(t) = −S(t+ π), (12)

then −c(z, t + π) is also a solution. Here an eddy dif-
fusivity K(z, t) = K(z, t + π) means simply that K is
periodic with a period of one-half day. In other words,
K, and hence the transport, behaves the same during
the day as during the night, as would be the case in
an unrectified situation. The source S(t) is assumed to
have day-night anti-symmetry and zero diurnal mean.
The proof simply involves letting t → t + π in Eqs. (5),
(6), and (7). By inspection, one sees that −c(z, t + π)
satisfies the equation (5) and boundary conditions (6-7).

If both c(z, t) and −c(z, t + π) are solutions, then,
because of linearity, there also exists the solution

ca(z, t) =
c(z, t) − c(z, t+ π)

2
, (13)

which also satisfies the boundary conditions (6-7). If
ca(z, t) has a period of 2π, then, it is straightforward to
show, by integration of (13) over a period, that

ca(z, t)
t
= 0. (14)

That is, ca has a profile that is uniform with height. In-
spection of (13) reveals that ca(z, t) obeys the following
periodic anti-symmetry:

ca(z, t) = −ca(z, t+ π). (15)

In such solutions, the perturbation mixing ratio at one
time is the opposite of what it is a half-day earlier or
later. For instance, a reduction of CO2 during the day
matches an equal but opposite increase in CO2 during
the night.

Perhaps of more interest is to demonstrate the con-
verse, that is, that if K(z, t) �= K(z, t + π), then
ca(z, t) = −ca(z, t + π) cannot be a solution. In
other words, if the transport differs between night and
day, then the CO2 time evolution must be asymmetric
(e.g. rectified) and not, for instance, sinusoidal (unrec-
tified). We defer the derivation to Larson and Volkmer
(2008), who prove that this is true wherever and when-
ever ∂ca/∂z is non-zero.

5. MODEL SOLUTIONS

5.1 A general, periodic, series solution

For the remainder of this paper, we will assume
that the eddy diffusivity, K, is independent of altitude.

Clearly this is a crude approximation for the earth’s at-
mosphere. However, the assumption permits simple an-
alytic solutions that are qualitatively realistic. We pre-
scribe a sinusoidal diurnal cycle in K:

K = 1 − α cos(t). (16)

Here, α is a parameter that lies within the range 0 ≤
α < 1. Given the model (16), K is greater during the
day, when the ground is heated and turbulent convec-
tion is more common, and lesser at night, when the at-
mosphere is often stably stratified. In this case, K does
not have the day-night symmetry (12), and hence c(z, t)
is not expected to have equal but opposite values during
the day as during night.

In the remainder of this section (Section 5), we will
set the source S(t) = 0, for simplicity. We seek a
time-periodic solution to the diffusion equation (5) with
boundary conditions (6) and (7). We use separation of
variables for z and t (e.g. Chapter 13 of Boas 1983).
That is, we seek solutions of a special form in which the
variables z and t appear in separate functions, which
we denote Z and T . Since the equation for c is linear,
such solutions may be summed:

c(z, t) =
�
m

Zm(z)Tm(t). (17)

After standard manipulations, we find the following
series solution to (5):

c(z, t) =
∞�

m=1

Am√
m
e−

√
mz [cosψ − sinψ] , (18)

where

ψ ≡ √
mz −mt+mα sin(t). (19)

We have retained only the solution that decays as z →
∞ in order to satisfy the upper boundary condition (7).

We choose the Am coefficients such that they sat-
isfy the lower boundary condition (6) (see Larson and
Volkmer (2008))

Am =
2

α
Jm(mα). (20)

Here Jm is the mth Bessel function.
The time-average concentration is:

c(z, t)
t
=

∞�
m=1

Am√
m
Jm(mα)e−

√
mz

�
cos(

√
mz) − sin(

√
mz)

�
.

(21)
By substituting (20) into (21), we see that at the surface
(z = 0), (21) reduces to

c(z = 0, t)
t
=

2

α

∞�
m=1

[Jm(mα)]2√
m

. (22)

By Taylor expanding the Bessel functions in polynomials
about α = 0 (Eq. 9.1.10 Abramowitz and Stegun 1965),
we find the approximate form



c(z = 0, t)
t ≈ 0.5α+ 0.229α3 + 0.143α5 . (23)

Recall that c(z, t) is the non-dimensionalized, per-
turbation mixing ratio: c(z, t) = (c̃(z̃, t̃) − c̃ref)/c0. In
dimensional form, Eq. (23) becomes

c̃(z̃ = 0, t̃)
t̃ ≈ c̃ref+

F0√
2ω0K0

�
0.5α + 0.229α3 + 0.143α5

	
.

(24)
These formulas indicate how the rectifier parameter α
affects the average surplus surface CO2 mixing ratio as-
sociated with the rectifier effect.

5.2 A simple model with a closed-form asym-
metric solution

If we desire to find an exact solution that has only
one term, then we may modify the lower boundary con-
dition as follows:

−K
2

∂c

∂z

����
z=0

= [1 − α cos(t)] cos [t− α sin(t)] . (25)

This boundary condition is more complex and less re-
alistic than the boundary condition (6), but it leads to
a simple solution. (Since this boundary condition does
not have the symmetry of cos(t) in general, it does not
permit the symmetry arguments of the previous sec-
tion.) Again using separation of variables, we find

c(z, t) = e−z {cos [z − t+ α sin(t)] − sin [z − t+ α sin(t)]} .
(26)

One can time-average this solution over a diurnal cycle
to find an averaged CO2 mixing ratio, c(z, t)

t
. One finds

c(z, t)
t
= J1(α)e−z [cos(z) − sin(z)] . (27)

For small α (Eq. 9.1.10 Abramowitz and Stegun 1965),

J1(α) ≈ 1

2
α. (28)

5.3 A special case: An anti-symmetric solu-
tion

The previous solutions permit α �= 0, in which case
K does not obey the day-night symmetry (12), and
hence c(z, t)

t �= 0. In contrast, when α = 0, thenK = 1

and c(z, t) becomes anti-symmetric with c(z, t)
t
= 0.

Here, for purposes of comparison with the previous
solutions, we set α = 0 and K = 1 in the governing
equation (5) and boundary conditions (6) and (7). We
find, e.g. via separation of variables, that a time-periodic
solution is

c(z, t) = e−z [cos(z − t) − sin(z − t)] . (29)

This is also the solution to which (27) reduces when α =
0. Because K has the symmetry (12), the solution has

the anti-symmetry of ca(z, t) (15), as expected by our
symmetry proof of Section 4. Furthermore, the diurnal
average is

c(z, t)
t
= 0, (30)

as expected by our proof of Section 3. The solution is
un-rectified.

5.4 Plots of solutions

By varying the rectifier parameter α, the series solu-
tion (18) allows us to compute solutions that range from
perfectly symmetric and unrectified (α = 0) to highly
asymmetric and rectified (e.g. α = 0.95). These two
extremes are plotted, respectively, in the left and right
columns of Figure 1.

The top right-hand panel (rectified case) shows a
sharp peak of CO2 mixing ratio at night and a deeper
layer during the day. The diurnal-mean profile of CO2

in the top right panel is rectified and looks qualitatively
similar to the observations presented in Figure 3(a) of
Yi et al. (2004).

The middle row plots the eddy diffusivity, the surface
CO2 mixing ratio, and the surface CO2 flux. The sur-
face mixing ratio is symmetric with time in the unrectified
case (middle left panel) and asymmetric in the rectified
case (middle right panel) as expected from the symme-
try proof of Section 4. The surface CO2 flux in either
case is prescribed to be a cosine and appears qualita-
tively similar to observations shown in Figure 3 of Davis
et al. (2003) and Figure 7 of Baker et al. (2003).

The bottom row shows the time series of CO2 mixing
ratio at various altitudes. The unrectified solutions are
symmetric with time, as expected. The rectified solu-
tions have features that agree qualitatively with the ob-
servations in Yi et al. (2000). For instance, mixing ratios
vary strongly with altitude at night, when the boundary
layer is stratified, and the mixing ratios vary little with al-
titude during the day, when the boundary layer is better
mixed (see, e.g., Figure 10 of Chen et al. (2004)).

6. INVERSE MODELING

The dimensionless model described above quanti-
fies the strength of the rectifier effect in terms of a sin-
gle dimensionless parameter, α. The simplicity of the
model facilitates inverse modeling. In a typical CO2 in-
verse model calculation, one measures the CO2 mixing
ratio in the atmosphere and infers the net flux of CO2

into the atmosphere from the underlying land or ocean
surface. The surface flux provides information about
sources and sinks of CO2 such as growth of biomass
via photosynthesis. An advantage of using CO2 mixing
ratio to infer CO2 flux is that it provides an estimate of
the flux over a broader region than is possible using a
single direct measurement of CO2 flux.

To illustrate how the above model of the rectifier
effect can simplify inverse calculations, we consider
the 1D problem of separately inferring the daytime and



nighttime surface CO2 fluxes. This might be useful be-
cause it begins to help separate the sink of CO2 due to
daytime photosynthesis from sources such as nighttime
respiration.

As input data for our problem, suppose that we mea-
sure a continuous time series of CO2 concentration
measurements at the ground and at one higher altitude.
Such measurements are taken at several research tow-
ers across the globe (Bakwin et al. 2004). The output
of our inverse calculation is a complete but approximate
solution of 1D (vertical) CO2 evolution and transport, in-
cluding the amplitude of the diurnally varying flux, F0 of
Eq. (2).

For simplicity, we assume that the internal atmo-
spheric “source” of CO2, S̃, is known. This “source”
could crudely represent horizontal advection of CO2 into
or out of the 1D grid column of interest. The four input
measurements are: the first and second Fourier cosine
coefficients ã1 and ã2 of the CO2 time series, and the

mean at the surface, c̃(z̃ = 0, t̃)
t̃

and at some altitude

aloft, c̃(z̃ = z̃1, t̃)
t̃
. The four unknown parameters of the

problem and the equations that define them are α (16),
c0 (4), F0 (2), and c̃ref (8).

The inversion procedure involves four straightfor-
ward steps that we will not discuss here but instead de-
fer to Larson and Volkmer (2008). We merely note that
our analytic forward model simplifies the inverse calcu-
lation because the strength of the rectifier in this simpli-
fied model depends only on a single parameter, α, and
therefore the inverse calculation requires that we nu-
merical calculate only two single-variable roots. Finding
such single-variable roots typically requires little com-
putational time.

7. CONCLUSIONS

We have constructed an idealized model of the ver-
tical CO2 rectifier effect. In the model, transport of CO2

is represented by a prescribed eddy diffusivity. The key
feature of the model is that the eddy diffusivity varies
diurnally. During the day, the eddy diffusivity is larger,
representing daytime convective vertical transport; dur-
ing the night, the eddy diffusivity is smaller, representing
nighttime stable stratification and weak vertical trans-
port.

Prior authors have noted that the diurnal rectifier ef-
fect arises from non-zero covariance of CO2 surface flux
and CO2 vertical transport (e.g. Denning et al. 1996b).
We prove a somewhat similar relationship in Section
3. Specifically, we show that in our model, the time-
averaged profile of CO2 mixing ratio is uniform in the
vertical (as typical for an unrectified solution) if and only
if there is zero covariance in time between the perturba-
tion eddy diffusivity and vertical gradient of CO2 mixing
ratio. Relatedly, we also show that the existence of the
rectifier effect in our model depends on whether the ver-
tical transport behaves the same during day as during
night (see Section 4). Specifically, we prove that the

diurnal cycle of CO2 mixing ratio in our model is asym-
metric (as typical for a rectified case) if and only if the
eddy diffusivity is not [periodic with a period of one-half
day]. This proof relies on the fact that our model’s CO2

surface flux has day-night anti-symmetry.
The point of these proofs is isolate the essential in-

gredients needed in an eddy diffusivity model to yield a
rectified or unrectified profile.

Our rectifier model can be solved analytically in
terms of an infinite series solution (18). In nondimen-
sionalized form, the model equations and solutions de-
pend on a single parameter, α. This rectifier parame-
ter represents the degree of day-night difference in the
magnitude of eddy diffusivity (see Eq. 16). Whenα = 0,
the eddy diffusivity is constant and the rectifier effect
vanishes. When α approaches 1, the eddy diffusivity
is much stronger during the day than at night, and the
rectifier effect is pronounced.

The rectifier parameter α can be simply but quantita-
tively related to the surplus surface CO2 mixing ratio as-
sociated with the rectifier effect. We find a relationship
in the form of an exact infinite series (22) and a Taylor
series approximation valid for small α (23). In this way,
the single parameter that represents diurnal variations
in turbulent transport, namely α, can be directly linked
to the strength of the rectifier effect.

Because the single-parameter solution (18) is sim-
ple, it facilitates inverse computations. As an example,
Larson and Volkmer (2008) discuss the construction of
a complete, 1D, time-evolving solution for CO2, given
a measurement of the time series of CO2 mixing ratio
at a location at the surface and at a single higher alti-
tude. The solution includes the amplitude of the diurnal
surface flux of CO2.

In addition to facilitating inverse computations, the
model illustrates conceptual points that may apply to
more sophisticated inverse methods (see Larson and
Volkmer 2008). For instance, the equations reveal
that this particular diurnal rectifier inversion problem
has some potential pitfalls. Specifically, inferring the
depth of vertical transport requires measurement at two
or more altitudes. Therefore, a surface measurement
alone is insufficient if vertical transport is unknown —
additional measurements are required, from a tower for
instance. This is because surface CO2 time series are
fundamentally ambiguous in this 1D setting: the same
time series may arise from strong surface flux and trans-
port, or weak flux and transport. Furthermore, when
CO2 is measured at two and only two altitudes, there
may remain further ambiguities. If the measurement
altitude aloft is too low, the inverse estimate may be
imprecise when CO2 mixing is deep. When the alti-
tude of measurement is about the same as the depth
over which CO2 mixes, then the solution may be non-
unique. We speculate that measurements at multiple,
strategically chosen altitudes would resolve these prob-
lems. The above considerations may prove useful in
design of field measurements of CO2 mixing ratio.

In a future application, the prescribed diurnal eddy
diffusivity (16) and surface flux (6) could be imposed for



CO2 in each grid column of an atmospheric model with
three spatial dimensions. The strength of the rectifier
effect could then be specified by setting the parameter
α. By performing sensitivity studies with different values
of α, one could explore how the rectifier effect combines
with three-dimensional transport to produce large-scale
patterns of CO2 mixing ratio. If the mixing ratio of CO2 at
a particular surface point in the atmospheric model dif-
fers from the value expected by 1D theory (i.e., Eq. 18),
then it indicates that 3D transport has a significant effect
at that point.
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Figure 1: Plots of the model solution for CO2 mixing ratio (Eq. 18), eddy diffusivity (Eq. 16), and CO2 flux at the
surface (Eq. 6). The left column of panels has no rectification (α = 0), and the right column of panels has strong

rectification (α = 0.95). The top right-hand panel shows that the time-averaged rectified profile of CO2 mixing ratio

has an excess of CO2 near the surface and a deficit aloft. The middle row shows that the time series of surface
CO2 mixing ratio when α = 0.95 has a classic rectified shape (middle right panel), with a sharp peak at night and a

moderate minimum during the day; when α = 0 (middle left panel), the time series is sinusoidal. The bottom row of
panels shows that with α = 0.95, the CO2 mixing ratio is stratified at night but more well-mixed during the day.


