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Abstract:  The recently developed SWIR atmospheric correction algorithm for ocean 

color retrieval uses long wavelength channels to retrieve atmospheric parameters to avoid 

bright pixel contamination. However, this retrieval is highly sensitive to errors in the 

aerosol model which is magnified by the higher variability of aerosols observed over 

urban coastal areas. While adding extra regional aerosol models into the retrieval Lookup 

Tables (LUT’s) would tend to increase retrieval error since these models are hard to 

distinguish in the IR, we explore the possibility that for highly productive waters with 

high CDOM, an estimate of the 412nm channel water leaving reflectance can be used to 

constrain the aerosol model retrieval and improve the water leaving reflectance retrieval. 

Simulations show that this constraint is particularly useful where aerosol diversity is 

significant. To assess this algorithm, we compare our retrievals to the operational 

SeaDAS SWIR and NIR retrievals using insitu validation data in the Chesapeake Bay and 

show that especially for absorbing aerosols, significant improvement is obtained. Further 

insight is also obtained by intercomparison of retrieved Rrs images at 443nm and 551nm 

which demonstrates the removal of anomalous artifacts in the operational SeaDAS 

retrieval.  

 

OCIS codes: 010.1110, 010.1690, 010.0280. 

 

 

 



1) Introduction 

 Accurate retrieval of water leaving radiances from ocean color satellite 

observations, such as SeaWIFS or MODIS, requires accurate correction algorithms to 

compensate for atmospheric impacts. For open ocean conditions, an atmospheric 

correction scheme [1] was developed where the aerosol contribution was estimated using 

top of atmosphere (TOA) reflectances obtained from the SeaWIFS 765-865 (or MODIS 

748-869) NIR channels under the reasonable assumption that the water leaving radiance 

at these wavelengths is negligible (black pixel approximation) due to strong water 

absorption. This atmospheric correction algorithm works well in open ocean waters, but 

tends to over correct for the atmosphere in coastal waters where the black pixel 

assumption is no longer valid[2-3] due to the increased reflection from hydrosol scattering. 

Thus, if the water leaving radiance is not negligible in the NIR bands, the retrieved 

aerosol loading will be overestimated resulting in underestimated or even negative water 

leaving radiances[4-5] for the 412nm channel.  

 To help compensate for these “bright” pixel contaminations, an attempt was made 

within the operational SeaWiFS Data Analysis System (SeaDAS) [6] to estimate the water 

leaving radiance in the NIR through the use of regression relations between the VIS water 

leaving radiances and the NIR water leaving radiances [7-9]. Such an estimate of the NIR 

water leaving radiances can then be used to arrive at a better aerosol path reflectance in 

the NIR channels and presumably lead to improved joint aerosol and ocean color 

retrievals. This method is equally suitable to MODIS and SeaWIFS but this approach 

obviously depends on the quality of the NIR regression relations which can significantly 

vary over diverse coastal waters. 

 To avoid these NIR algorithm difficulties, an approach [10] for atmospheric 

correction in coastal waters that uses different short wave infrared (SWIR) bands (i.e. 

MODIS 1240 and 2130nm) was proposed for operational retrieval of coastal water color 

and tested within SeaDAS. It should be pointed out that algorithms using the SWIR 

bands for atmospheric correction are not new and have been a staple of the hyperspectral 

imaging community including aircraft sensors such as AVIRIS and satellite sensors such 

as Hyperion [11-12].  This approach is based on the fact that ocean water absorbs strongly 

in this spectral region and the contributions of the in-water constituents are negligible and 



can safely be considered dark. However, at these long wavelengths, the atmospheric 

reflectance itself is significantly weaker and spectral features due to absorbing aerosols or 

fine urban modes are particularly difficult to resolve. Therefore, the retrieval error for 

water leaving radiances in the VIS channels using the SWIR bands is larger than that 

obtained using the NIR bands as long as the pixels in the NIR are sufficiently dark (or 

can be estimated with sufficient accuracy)  

 Based on these considerations, a constraint on the aerosol path reflectance in the 

visible is needed to improve retrievals, and in particular distinguish between oceanic, fine 

mode and absorbing aerosols.  The purpose of this paper is to investigate the 

consequences of using the 412nm channel together with the SWIR retrieval algorithm to 

provide this constraint, and help distinguish and better quantify aerosols. We show that in 

the productive waters of the Chesapeake Bay, where the 412nm water leaving reflectance 

is reduced due to high Chlorophyll (ChL) and Color Dissolved Organic Matter (CDOM) 

absorption, significant improvement in atmospheric retrieval can be obtained resulting in 

improved water leaving reflectances. This paper is organized in 6 sections: following this 

introduction (section 1), in section 2 we explore the statistical variability of the 412nm 

water leaving reflectance using available SeaBASS measurements. From these datasets, 

we calculate the statistical distribution to determine the mean estimator as well as the 

error in the estimator for both σ1  and 2σ confidence levels. To assess the performance 

of the mean estimator, a quantitative comparison using a bio-optical model estimator 

approach [13] to provide a “bio-optical” constraint at 412nm is performed to determine the 

best estimator for coastal waters. In section 3, a radiative transfer model is presented and 

both the conventional NIR and SWIR atmospheric correction schemes are briefly 

described. In particular, we note that SeaDAS relies on historical oceanic phenomological 

models which do not properly account for absorbing[13] and fine mode aerosols which are 

fairly common for eastern US coastal environments. To include this variability, 

microphysical models based on NASA Aerosol Robotic Network (AERONET) aerosol 

retrievals from the Maryland Science Center, SERC and the COVE sites that are 

downwind from the Chesapeake Bay are used to generate radiative transfer LUT’s which 

are combined with  the SeaDAS models to provide  more representative LUT’s [14].  In 

section 4, sensitivity metrics are defined for measuring retrieval error over an ensemble 



of atmospheres and atmospheric retrieval sensitivity studies are presented for the 

traditional NIR retrieval approach. In section 5, we assess the aerosol retrieval and 

associated water leaving reflectance retrievals for both the NIR and SWIR correction 

scheme and show that the use of the “threshold” constraint introduced in section 2 for the 

412 nm aerosol reflectance results in significant improvements in water leaving 

reflectance in the visible bands when the extended aerosol LUT’s introduced in section 3 

are used. In addition comparisons with in-situ remote sensing reflectance and aerosol 

optical depth are explored. Further comparisons are also made between Rrs retrieval 

images at 443nm and 551nm as well as AOD retrievals. In section 6, our conclusions are 

presented. 

 

2) Choosing the 412nm normalized water leaving reflectance constraint 

 In our scheme, the 412nm channel TOA reflectance can help constrain the aerosol 

retrieval and provide compensation only if the normalized water leaving reflectance at 

412nm is estimated a-priori with a reasonable accuracy, as the normalized water leaving 

reflectance uncertainty is the predominant factor in the error budget. For this to be the 

case, other factors which may contribute to the TOA signal uncertainty such as ozone and 

NO2 are assumed to be  corrected using concentration information obtained from UV 

profilers such as the OMI sensor on Aura [15-16] coupled to radiative transfer calculations 

for correction.  In addition, it is well known [17] that at 412nm, errors using the scalar 

radiative transfer algorithm versus a vector radiative transfer algorithm can be as high as 

3-5% of the total reflectance at TOA. However, we take the position that in future, a 

suitable processing based on the full vector radiative transfer code will replace the current 

atmospheric LUT’s  for both the SeaDAS and Aeronet atmospheres with out altering at 

least qualitatively our investigation 

 Two methods for estimating the ( )[ ]412wnρ  parameter are considered. In the first 

approach, we can determine a best estimate by simply using the mean value obtained 

from large scale in-situ measurements. The statistics are based on SeaBASS database 

measurements in the Chesapeake region which are illustrated in figure 1. Unlike the deep 

water reflectances, we see that the normalized water leaving reflectance at 412nm 

( )[ ]412wnρ  is relatively low and stable which are consistent with high CDOM coastal 



waters in which the reflection is dramatically quenched, which is a necessary condition 

for the development of a relatively accurate estimator. To see if this approach is optimal, 

we contrast it with a bio-optical estimator approach which was introduced in [10] to 

correct for absorbing aerosols contamination by providing an estimate of 412nm water 

leaving reflectance. In this scheme, this is done by using normalized water leaving 

reflectances at  longer wavelengths which are expected to be less affected by 

uncertainties in the aerosol modeling and compensation (i.e. Rrs_488, Rrs_551 and 

Rrs_678) and ingesting them into a bio-optical model which can then be extrapolated  to 

provide an estimate of ( )412wnρ . However, in testing this bio-optical estimator on the 

normalized water leaving reflectances in the SeaBASS database, we find the estimator 

generally underestimates the insitu value and this bias result in a larger uncertainty as 

seen in figure 2. To quantitatively compare these two approaches, we plot in figure 3 the 

cumulative distributions of the residual ( ) ( )[ ]412412 wnwn est ρρε −= for the two 

estimators. We first note that the mean estimator significantly outperforms the “biased” 

bio-optical estimator for the Chesapeake region. However, on a global scale (deep water), 

the mean estimator is no longer useful and the bio-optical estimator can provide a better 

constraint, although both estimators perform poorly in comparison to the Chesapeake 

results. In addition, we also plot the residuals for the situation where the bio-optical 

estimator retrieval is modified to remove its bias by subtracting the mean of the residuals. 

While this is not a reasonable modification to the bio-optical estimator approach in 

practice, it does provide a lower limit to the uncertainty that can be achieved. In 

particular, we find that even when the bio-optical estimator is externally corrected for 

bias, the uncertainty in the threshold estimator is still optimal, especially beyond the 

1σ confidence level. These observations clearly illustrate that the simple mean estimator 

is best suited to providing a constraint on the 412nm water leaving reflectance. Finally, 

from the cumulative distribution functions calculated in figure 3, we find that the 

uncertainty in the mean estimator can be quantified as: 

( ) 005. and 1at 003.  where 21 =Δ=ΔΔ+= σσ ρσρρρρ wnwnwnwnwn  

 

 



3) Atmospheric correction 

 

a) Background  

 

The signal received at the TOA by an ocean color satellite sensor (i.e., SeaWIFS, 

MODIS) may be written as [9] 

 

)()()()()()()()()( λλλλλλλλλ wuguwcuArt LtLTLtLLL ++++=   (1) 

 

where )(),(),(),( λλλλ gwcAr LLLL  and ),(λwL are the contributions due to molecular 

scattering (Rayleigh), aerosol and Rayleigh-aerosol scattering (i.e. 

)()()( λλλ raaA LLL += ), whitecaps, sunglint, and ocean water respectively. 

Here, )(λuT and )(λut are the direct and diffuse upwelling transmittances of the 

atmosphere.  

 The radiance L can be converted to reflectance ρ using the relation 

00 cosθ
πρ

F
L

= where 0F is the extraterrestrial solar irradiance and 0θ is the solar zenith 

angle. Assuming that the contributions from sunglint and whitecaps have been removed, 

equation (2) can be written as  

 

)()()()()()( λρλλλρλρλρ wndurtA tt−−=      (2) 

 

where the conventional normalized water reflectance which is used to separate the 

atmospheric illumination affects from the reflection process, dwwn tρρ = , has been 

adopted where td is the diffuse downwelling transmission. 

 For conventional atmospheric correction, both SeaWIFS and MODIS have bands 

in the NIR (i.e., 765/865 nm and 748/869 nm respectively) for which )(λρwn is assumed 

zero. While this is normally valid in case I waters (Black Pixel Approximation), coastal 

waters with large sediment concentrations will often have significant water leaving 



signals at both NIR bands. This observation has led to the current approach in coastal 

waters of using the SWIR bands available for the MODIS sensor at 1240 and 2130 in 

which the black pixel assumption is valid under all reasonable conditions.  

 Historically, the inversions of the aerosols were done in a sequential fashion 

where the model was retrieved first and then the optical depth obtained second. In detail, 

defining sλ and lλ to represent the shorter and longer IR bands, the measured aerosol 

path reflectance spectral ratio (epsilon factor ( ) )(/)(, lAsAls
MS λρλρλλε = ), which is 

fairly insensitive to aerosol optical depth at the TOA, is compared  (within the black pixel 

approximation) with the  epsilon values  generated from within  a pre-calculated look up 

table  (LUT). By minimizing the error between measured and modeled ε factors, the 

appropriate aerosol model from the suite of aerosol models could  be determined. Once 

the model is selected, the optical depth for that aerosol model can then be determined by 

equating the aerosol reflectance ),(, τλρ sModA to the TOA reflectance. Once the aerosol 

model and optical depth at sλ  is determined, the atmospheric reflectance can be obtained 

from the LUT  for all relevant wavelengths and the ocean reflectance )(λρwn  calculated 

from equation (4) for the visible bands.  However, this approach becomes more 

inaccurate for SWIR where the extrapolation to the VIS is more problematic. In fact, it is 

no longer reasonable to use ε  factors since the ratio of the aerosol path reflectances in 

log space are no longer linear over the increased spectral range. In fact it is necessary to 

apply a simultaneous fitting of the TOA reflectances to derive simultaneously the model 

and optical depth. This approach is the only one used in both the simulation and matchup 

data cases and is in fact quite similar to the spectral matching method of Gao et al [11-12]. 

Finally, we would like to emphasize that we will use the language of ε  factors in 

subsequent sections but this is only to illustrate the need for aerosol LUT with more 

variability than available in SeaDAS and to reinforce the difficulties (including 

nonlinearity) in extrapolating from the SWIR to the VIS channels.  

 

b) Aerosol Model Selection  

 In order to assess the uncertainty in the normalized water leaving reflectance 

inherent in the SWIR approach, as well as to assess the utility of the statistical estimates 



of ( )412wnρ  in reducing the retrieval uncertainty, we need to calculate the appropriate 

LUT’s based on an inclusive set of atmospheric models. At present, SeaDAS uses 12 

aerosol models in the standard processing; these are the oceanic, maritime and 

tropospheric models which are based on the models developed by Shettle and Fenn[18] 

and an additional coastal aerosol model  to represent the aerosol over the oceans near the 

coast was added by Gordon et al[16]. These aerosol models are the oceanic model with 

relative humidity of (RH= 99%) (denoted as O99), the maritime model with RH= 50%, 

70%, 90% and 99% (denoted as M50, M70, M90, and M99), the coastal model with RH= 

50%, 70%, 90% and 99% (denoted as C50, C70, C90, and C99), and the tropospheric 

model with RH= 50%, 90% and 99% (denoted as T50, T90, and T99). This suite of 

aerosol models is used to generate the aerosol LUT’s and represents mostly nonabsorbing 

and weakly absorbing aerosols.  

 To illustrate the variability of the SeaDAS aerosol models, figures 4 a,b show the 

spectral variation of the epsilon function relevant for the NIR correction and SWIR 

correction ( ) ( )869)869,( aeraer ρλρλε ≡ ; ( ) ( )2130)2130,( aeraer ρλρλε ≡  which 

illustrates the spectral behavior of the aerosol path reflectance for both the NIR and 

SWIR correction schemes. A solar zenith angle of 60o, a sensor zenith angle of 45o, and a 

relative azimuth angle of 90o were used 

to maximize the atmospheric perturbations and to avoid sun-glint:  

 Unlike the SeaDAS approach for estimating atmospheres over water using 

climatological models, the MODIS retrieval of aerosol properties is governed by Aeronet 

based models. In the conventional scheme, a set of fine and coarse models are obtained 

through a cluster based analysis [19] and the retrieval is based on linear mixing of the finer 

and coarse modes.  One approach to develop a reasonable LUT based on this scheme 

would be to use a linear mixture of all possible modes with a wide variety of mixing 

ratios to build up the LUT’s. However, it is much more representative to build up the 

LUT based on existing atmospheric Aeronet retrievals over a specific geographic region. 

In particular, since we are looking specifically at the Chesapeake bay, we use a 

combination of MD Science Center, COVE and SERC data obtained from  2005-2006.  

 While the SeaDAS LUT’s we used were obtained directly from the source code, 

the Aeronet atmospheric aerosol models were generated by us with the SHARM radiative 



transfer code [20]. In building the LUT, the historical approach is to use one dimension for 

the aerosol model and another dimension for the optical depth. However, as discussed 

previously, we choose to merge both the aerosol model and optical depth which results in 

159 phase functions (aerosol models) and 10 different AOD levels (i.e. 1590 

atmospheres) as described in Table 1. From this set, we can then use multichannel TOA 

measurements (as well as a-priori estimates of water leaving reflectance at 412nm) to 

constrain the aerosol model and optical depth simultaneously. In particular, by matching 

all constraints simultaneously, we can obtain a list of joint models and optical depths  

{ }jjM τ,  which are consistent with all spectral channel constraints. From this list, we 

may obtain the statistics of aerosol retrieval including mean and standard deviation etc. 

The details of this approach are given in section 4.   

 

 To see how the aerosol models compare, we plot in figure 5a,b the epsilon factors 

)]2130,(log[ λε for both SeaDAS and AERONET based atmospheres. In particular, a 

large number of high angstrom coefficient aerosol models 

( )[ ] 5.32130,412log1 ≤≤ aeronetε are observed in AERONET which are not included in 

the SeaDAS LUT’s  ( )[ ] 5.22130,412log0 ≤≤ SeaDASε . While the different domains for 

the ε parameters show a need for a modified LUT, the effect of absorbing aerosols whose 

affects are increased in the blue (due to enhanced rayleigh-aerosol interaction) are 

obscured. To see the absorbing aerosol effects more clearly, we plot in figure 6 the 

relationship between the path reflectance (blue/green) ratio ( ) ( )555412 aeraer ρρ=Δ   as 

it relates to the aerosol single scatter albedo 0ω . Clearly, a strong monotonic behavior is 

seen between the albedo and the blue/green ratio which if not included in the LUT, will 

lead to unphysical retrievals. However, the spread in the spectral ratio around the best fit 

(quadratic) line does not show a significantly larger data spread as the single scattering 

albedo is reduced. This suggests that this set can describe the absorbing aerosol properties 

quite well and the concerns of aerosol vertical structure is reduced due to the natural 

stability in how aerosols are distributed vertically for a given region. Of course, the 

existence of high altitude absorbing aerosol plumes will dramatically alter this approach 

and would require real time input from an active lidar system such as the Micropulse 



Lidar. To further demonstrate that the SeaDAS models do not provide the needed 

variability, we plot in figure 7 the cumulative distribution function for Δ  over the aeronet 

atmospheres which are compared to the SeaDAS model values. We note a small  

percentage (5%)  of atmospheres (absorbing) have blue green ratios below the smallest 

SeaDAS based ratio and as much as 20% of the aeronet atmospheres have values above 

the largest 

 To account for the natural variability of aerosols, it would be nice to be able to 

combine the complementary LUT’s using a-priori statistics to weight the likelihood of 

each individual element. However, the data needed to obtain such a true weighting is 

limited by the restrictions placed on the AERONET retrieval which result in retrievals 

biased to high angstrom coefficient, making it impractical to assign relative weights to 

elements in the LUT. Instead, we will focus on a worst case scenario where the weights 

of the LUT elements are taken to be equal. It is our purpose to show that even in this 

extreme case, where the uncertainties in the retrieval are expected to be at their 

maximum, the constraint imposed at 412nm on the upwelling water radiance for the 

Chesapeake is sufficient to reduce the retrieval errors to values that would be comparable 

to those obtained solely based on the restricted SeaDAS LUT. This suggests an algorithm 

which can perform retrievals over a more diverse LUT including both fine mode and 

absorbing aerosols that can increase the percentage of retrievals while keeping the errors 

constrained to those obtained  

 

4) Water Leaving Reflectance Error Metrics 

 Once the appropriate LUT’s are constructed, we can assess the retrieval errors for 

the normalized water reflectance which occur due to the uncertainties in the atmospheric 

model determination. In this work, the main contributor to the uncertainty seen on the 

VIS channels can be ascribed to the aerosol model retrieval since we assume that a 

suitable assimilation of auxiliary measurements of total path ozone and NO2 [16,21] will 

reduce gaseous transmittance and gas-aerosol uncertainties.  

 Based on the radiative transfer model formulation given in eqn (2), the retrieval 

error for  water leaving reflectance will depend on the variability of the atmospheric 



parameters  aρ , ( )udttt =2  , the channel noise as well as the mean value of the 

normalized water leaving reflectance. The details of the procedure are as follows  

 

Step #1: Find all possible LUT atmospheres (enumerated by index i) in which the 

atmosphere path reflectance data for all atmospheric channels is consistent with the TOA 

reflectance and all other constraints are satisfied.    Since the study is synthetic, we define 

the “true” signal to be the TOA signal for atmosphere model (k) .   Mathematically, we 

construct the atmosphere set kS  to satisfy all the following constraints simultaneously. 

The formulations of the constraints are divided into radiometric constraints and water 

leaving constraints. In the radiometric case, the constraints are based on receiver 

specifications while the water leaving constraints are based on estimates of normalized 

water leaving reflectances wnρ  and the estimator uncertainty wnρΔ . These constraints 

will be applied by us to assess both the conventional bright pixel contamination in the 

NIR channels or in the 412nm channel.  

 

Dark Pixel (Radiometric) channel constraints: 

 

     

              (3a) 

 

where               is the Noise Equivalent Path Reflectance for channel (l) 

 

 (Water leaving Reflectance) Constraint:  

 

           (3b) 

      

 

 Satisfying the appropriate constraints simultaneously results in the determination 

of the set kS which contains all possible retrieval atmospheres for the reference 

atmosphere (k).  
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Step #2:  For each atmospheric model (i) in the resultant ensemble set kS , calculate the 

normalized water leaving reflectance as [ ] [ ]
[ ]iud

iatmt
iwn tt

ρρ
ρ

−
=  

Step #3: Once all the water signals are calculated, we perform an average 

[ ] [ ]iwn
k
retwn ρρ =  

Step #4 Finally, we average (for convenience) over all atmospheres to obtain the LUT 

averaged retrieval [ ] [ ]kretwnretwn ρρ =  

         

5) Algorithm Intercomparison Studies 

 

5.1 Long wavelength Constraints 

 

To begin our sensitivity analysis, the radiometric sensitivities of the MODIS channels 

must be specified. The MODIS noise equivalent radiances )( LNEΔ were taken from 

IOCCG report [22] These radiances were converted to noise equivalent reflectance using 

)( 00 θ
πρ

CosF
LNENE Δ×

=Δ  , where 0F  is the solar extraterrestrial irradiance. Their values are 

given in Table 2.  

 These noise levels are calculated for the individual pixel but in accordance to the 

aerosol retrieval algorithms for MODIS [23] the SWIR channels are first aggregated into 

10km x 10km boxes which pass through a series of filters for removal of clouds, glint etc. 

The final retrieval requires that number of quality pixels 30>pN  which we set as our 

standard. Therefore, all per pixel ρΔNE  values are reduced by the square root of the 

pixel number  

 

[ ] =Δ effNE ρ pNNE ρΔ         (4) 

 

 



5.2 NIR algorithm with water leaving estimator.  

 

Before evaluating sensitivities for SWIR algorithms, it is useful to revisit the traditional 

NIR atmospheric correction scheme. In the standard operating procedure for coastal 

waters, the dark pixel approximation is no longer used ; instead a NIR estimator based on 

normalized water leaving reflectance in the VIS (and ChL estimates) is used to predict 

the NIR normalized water leaving reflectance. [24]  

 To assess the accuracy of this estimator, we use public domain data based on 

hydrolight simulations generated by Lee et al[25] of water leaving reflectance suitable for 

coastal water conditions as part of the IOCCG report. In figure 8, we plot the fractional  

error in the estimator relative to the measured value (as obtained from the IOCCG 

database) for ( )760wnρ  and observe that the error in the estimator (at the σ1  level) is 

about 10%. These results are similar to the 865nm estimator although the error is slightly 

higher. . With this assessment of the errors that occur when NIR estimators are used to 

estimate the water leaving reflectance in the NIR channels, we can define the error in the 

NIR atmospheric channels as  

 

( ) ( )NIRwnNIR fNE λρλρ =Δ         (5)  

 

where the mean normalized water leaving reflectance obtained from the SeaBASS  

database is used and f is the bright pixel compensation factor. For example, 1=f  

corresponds to no attempt at correcting for bright pixels, 1.0=f corresponds to an 

estimate of the bright pixel to 10% accuracy  and 01.0=f corresponds to a level of 

bright pixel compensation to the 1% level.   

 The results for the NIR atmospheric retrieval case are presented in figure 9 as a 

statistical cumulative distribution function of fractional normalized water leaving 

reflectance uncertainties in the visible wavelengths (relevant to ChL retrieval) over the 

set of all possible atmospheres in the atmospheric LUT. These illustrate that for the 

limited SeaDAS atmospheric LUT, at the σ1  level, errors of 

( ) ( ) %,15488%,30443 ≈Δ≈Δ wnwn ρρ  and ( ) %5551 ≈Δ wnρ  are found. However, the same 



calculation based on the cumulative (SeaDAS + Aeronet) LUT results in much higher 

errors of ( ) ( ) ( ) %10551%,50488%,120443 ≈Δ≈Δ≈Δ wnwnwn ρρρ . In particular, we note 

the error in the 443 channel is much too large when used as input into  ChL algorithms 

currently employed. [26] 

 

5.3 SWIR algorithm with additional 412nm water leaving constraint  

 

For the SWIR correction scheme [(1240,2130)], we first examine the retrieval uncertainty  

using the SeaDAS LUT. The results are shown in figure 10 where the constraint on the 

412nm channel is varied. In particular, we consider the case where no constraint at 

412nm is used, the application of the constraint ( ) 003.4121 ±= wnwn ρρ σ  which is the 

%)60(1 ≈σ  confidence level and the  σ2 confidence level constraint 

( ) 005.4122 ±= wnwn ρρ σ . The results show that for the limited SeaDAS LUT, the effect of 

the 412nm constraint is minimal. However, it is interesting to note that the errors using 

the SWIR are approximately ( ) ( ) %,10488%,20443 ≈Δ≈Δ wnwn ρρ  and 

( ) %3551 ≈Δ wnρ  which is ~ 50% improvement over the NIR approach, showing the 

usefulness of the SWIR approach in general.   

   

To summarize, table 3 shows the results of the uncertainty in the normalized water 

leaving reflectance for the 443, 488 and 551 nm bands for the NIR and SWIR algorithm 

for both the SeaDAS and (SeaDAS+Aeronet)  LUT’s, and how they are improved when 

the   constraint at 412nm is used. The results  can be summarized as follows 

 

1. The retrieval error from conventional NIR algorithm becomes extremely significant if 

the level of bright pixel contamination compensation is less than 90% (f=.1) The 

errors are even more severe when the combined Aeronet – SeaDAS LUT is used.  

 

2. In comparison to the NIR algorithm with realistic bright pixel compensation errors, 

the unconstrained SWIR algorithm retrieval error is ~ 25% less. This result is also 

approximately true when employing  the combined Aeronet – SeaDAS LUT.  



 

3. When the combined SeaDAS + Aeronet tables are used, the 412nm constraint is much 

more important as seen in figure 11. Without the 412 constraint, the errors at 443nm 

become very large due to the added spectral variability of the atmospheric models. 

The weaker  σ2  confidence level constraint helps reduce the errors to some extent 

but with the stronger σ1 constraint,  the errors in the water leaving retrievals are 

commensurate with the results using the SeaDAS LUT  alone.  

 

5.4 Assessment of 412 constraint algorithm on insitu data sets 

 

5.4.1 Matchup Comparisons 

 

To summarize, we have proposed a modification based on sensitivity studies  of 

the operational SeaDAS SWIR algorithm by increasing the number of aerosol models to 

account for local aerosol climatology as well as using in-situ derived statistical 

constraints of the normalized water leaving reflectance at 412nm to provide an added 

restriction on the selection of the final aerosol model. As pointed out earlier, this 

approach works best for notable CDOM absorption that reduces the 412nm water signal 

and is therefore particularly useful in the Chesapeake where moderate to high levels of 

CDOM is often observed. In particular, without this strict constraint, the retrieval error 

within the SWIR approach would be much higher when more extensive aerosol model 

LUT’s based on regional observations are used. 

To assess our approach more directly, we first compare in-situ normalized water 

leaving reflectances obtained from insitu measurements from the NOMAD database with 

those obtained from our retrieval method as well as those obtained using the operational 

SeaDAS SWIR algorithm as applied to MODIS AQUA measurements.  Our focus during 

the inter-comparison is the 443 nm channel since this channel is the most difficult for 

retrieval (besides the 412nm channel) and the channel most positively affected by the 

412nm constraint. Table 4 lists the location sites in the Chesapeake as well as the results 

of our comparison. Here, in-situ data of upwelling radiance and downwelling irradiance 

stored in the NOMAD database are used to compute the insitu Rrs values. These matchup 



cases were chosen because of the availability of aerosol optical depth retrievals from 

AERONET, insitu remote sensing reflectance, as well as AOD and remote sensing 

reflectance retrievals using the standard SWIR algorithm of SeaDAS. 

 To begin, we examine the aerosol optical depth retrievals. The results of the AOD 

comparison are given in figure 12 for the operational SWIR using the 16 SeaDAS aerosol 

models and our current constrained algorithm using the regional models. In particular, we 

see that both algorithms seem to provide a reasonable estimate of the AOD although the 

modified algorithm seems to show the best improvement in the retrieval when AOD is 

relatively small. Error bars are provided in the modified algorithm based on the standard 

deviation of AOD retrievals that satisfy all SWIR radiometric constraints as well as the 

412 water leaving constraint. The reason for the improved AOD is more clearly 

illustrated in figure 13 where the AOD match-ups are compared to the aerosol single 

scatter albedo (SSA). In particular, the SeaDAS models clearly overestimate the aerosol 

AOD when the SSA < 0.9 illustrating the benefits of including more regional absorbing 

aerosol models.  

 Finally, we compare in figure 14, the remote sensing reflectance obtained from 

our algorithm  with the standard SWIR model as well as the NIR algorithm (when 

possible) Although neither retrieval approach seems completely satisfactory, we do note 

the removal of negative retrievals in our approach which occur in the standard processing 

due to the presence of a moderately absorbing aerosol modes discussed above. This 

undesirable feature is also seen when the NIR algorithm is used. On the other hand, we 

also see significant improvement using our constrained regional algorithm retrieval to 

insitu data for matchup sites 11-17 in comparison to the SWIR algorithm. These 

matchups occur in the coastal ocean outside the Chesapeake Bay area (the blue sites in 

figure 15) where the NIR algorithm is expected to be superior to the SWIR which is 

indeed the case. However, while it is expected that the NIR algorithm should perform 

better than the SWIR outside the bay, the magnitude of the discrepancy is quite 

remarkable. This can be explained by noting that the aerosol reflection ratio 

( ) ( )555412 aeraer ρρ  for these matchups has a mean value of 1.32 which is outside the 

range within the SeaDAS models.(see fig 7) Therefore, within the SeaDAS retrieval, the 

412 aerosol reflectance is likely to be underestimated resulting in an overestimate of the 



water signal.  This mechanism together with the significant extrapolation errors inherent 

in the SWIR algorithm from an inaccurate optical depth aerosol model can clearly lead to 

dramatic errors when trying to retrieve water leaving signals which are quite small due to 

ChL and CDOM absorption. However, even under these difficult retrieval conditions, the 

412nm constraints seem to be sufficient to improve the retrieval to the level of the NIR 

algorithm.   

 

5.4.2 Image Comparison 

Optimally, spatial comparison of our algorithm to the current SeaDAS retrievals would 

require us to directly assimilate into the SeaDAS processing stream the selection 

algorithm for of the best atmospheric model based on regional aerosol models and 

constraint approach outlined above.  However, preliminary comparisons are presented 

here based on a limited emulation of the SeaDAS processing but substituting our 

atmospheric selection algorithm..  In particular, to avoid differences in pre-processing, 

we use the Level 2 SeaDAS outputs directly to generate the TOA reflectances in the VIS 

and NIR.  Unfortunately, the SeaDAS TOA reflectance is not generated for the SWIR 

bands at 1240 and 2130, so we must process these directly from the MODIS Level 1B 

reflectances. As a preliminary consistency check, and to ensure that no significant errors 

due to possible differences in the pre-processing occur, we compare in figure 16, the 

TOA reflectance at 869nm which were calculated from both SeaDAS and our processing 

of the MODIS Level 1B data. Cursory inspection of the matchup shows good agreement 

and supporting statistical analysis shows that errors over all points < 2% with a one 

standard deviation level of about 0.5%.  

For comparison purposes, we present an illustrative cloud-free case (Oct 3 2003) 

which has the added feature that much of the SeaDAS retrieved Rrs at 443nm is 

anomalously negative.  

The most interesting comparisons between SeaDAS SWIR retrievals of the 

remote sensing reflectance for 443nm and 551 nm and our regionally constrained 

approach are made in fig 17. We first note (panel b) the dramatic anomalous negative Rrs 

at 443 nm from SeaDAS together with the fact that that the effect is dramatically 

stratified between the west (negative) and east (positive) shorelines. The constrained 



regional retrieval on the other hand removes the anomalous negative Rrs values and the 

unphysical stratification seems to be significantly removed. The results at 551nm are less 

dramatic since the effects of aerosol diversity is less pronounced and the overall water 

leaving signal in most cases is significantly larger than at 443nm.  

However, it is important to point out that our constrained regional retrieval does 

not find a suitable solution in all cases where SeaDAS retrieval was successful. In 

particular, the narrow western tributaries as well as a gap near the center of the bay were 

unsuitable for retrieval. In examining these regions, looking at the TOA reflectances 

(figure 16), it is clear that retrievals would be grossly inaccurate since these regions have 

anomalous bright reflectance patches due to either inadequate cloud mask or in the case 

of the tributaries, to possible ground reflectance contamination from the surrounding 

shore. The fact that these questionable regions are being processed by SeaDAS is evident 

in dramatic anomalies in the retrieved Rrs values as well as the aerosol optical depth as 

seen in fig 18. Interestingly, we note the same east-west stratification in the retrieved 

AOD retrieval which is again eliminated in our approach. In fact, the overestimation of 

AOD for the western bank seems to be highly correlated to the underestimation of the 

Rrs.   

 

6) Conclusions  

 

 To avoid the bright pixel contamination in the traditional NIR bands of MODIS, a 

SWIR algorithm was introduced within the SeaDAS development environment. 

However, the current operational algorithm uses a limited set of 12 ocean based aerosol 

models which do not address the complete variability of aerosol optical properties, 

especially in coastal region and in the vicinity urban/industrial areas. This can lead to 

poor retrieval results when exposed to aerosols models which have significantly different 

spectral features as observed in regional Aeronet retrievals. Such cases include highly 

absorbing aerosols whose effective TOA reflectance in the blue is relatively low, as well 

as urban non-absorbing aerosols with relatively high reflectance in the blue, and which 

cannot be easily distinguished with IR estimates alone. Clearly, if the increased diversity 

of aerosol spectral responses in the coastal zone is included within the atmospheric 



LUT’s used in the atmospheric correction procedure, a significantly larger retrieval error 

will occur unless additional constraints are  used to restrict the set of aerosols for a given 

TOA signal.  

In this paper, we have shown that if no additional constraints are added, the SWIR 

algorithm retrieval using the more realistic LUT will lead to unacceptable errors but that 

these errors can be removed if strong statistical constraints on the normalized water 

leaving reflectance at 412nm can be applied. In fact, we find that for the Chesapeake Bay, 

the high CDOM absorption lead to a quasi-black pixel condition which provides us with 

the tight constraints needed to retrieve water leaving reflectance using the more complete 

and regionally tuned  atmospheric LUT. including fine mode aerosols and absorbing 

aerosols. This effectively translates into a higher percentage of successful retrievals for 

coastal environments.  

 In addition, we considered the possibility that a bio-optical estimator approach 

might provide a tighter constraint on the water leaving reflectance at 412nm. However, 

we found that errors in the bio-optical model are in fact significantly larger than the 

errors associated with the  simple statistical estimator approach we have been 

considering. This is in part due to the bias inherent in the bio-optical estimator which 

makes it so useful in flagging high absorbing aerosol features but results in large 

quantitative errors 

The testing of the algorithm against MODIS data sets was explored in section 5.4 

where both AOD retrievals and remote sensing reflectance were considered. To 

summarize our observations in subsection 5.4.1, where retrievals were compared to insitu 

and ground based data, the constrained regional SWIR algorithm appears to provide a 

modest improvement on the AOD retrievals relative to AERONET retrievals. This is 

particularly the case when absorbing aerosols are considered. In fact, we find in this case 

that an overestimate in the aerosol optical depth in the traditional SWIR algorithm is 

significantly improved using the regional approach. In addition, when remote sensing 

reflectance at 443nm is considered, we find that both the NIR and SWIR algorithms still 

yield negative values which are corrected with our regional constrained approach. Even 

outside the Chesapeake, where the traditional SWIR algorithm performance is expected 

to be less accurate than traditional NIR algorithms, the constrained regional algorithm 



seems to perform at about the same level as the NIR algorithm in support of our 

numerical sensitivity studies. Further assessment of our approach was provided in 5.4.2 

where retrieved images of Rrs at 443nm and 551nm as well as AOD at 551nm are 

compared for standard SeaDAS processing and SeaDAS processing augmented with our 

atmospheric selection algorithm. In particular, we note that the SeaDAS Rrs image had 

notable anomalous values which are eliminated in the constrained retrieval as expected 

for an algorithm which forces a positive reflectance at 412nm. More interestingly, the 

anomalous negative behavior of the SeaDAS retrieval seemed to be spatially stratified 

into west (negative) and east (positive) coast regions which is unlikely and a 

manifestation of a similar stratification seen in the AOD retrieval .On the other hand, 

agreement in the Rrs 551 retrieval matchup demonstrates the general soundness of our 

approach . 

Finally, to study the approach in a more operational manner, more cases and 

regions need be explored and the choice of representative aerosol models must be 

reduced.  At present, we are working at integrating our changes directly into SeaDAS. 
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Captions 

 

Figure 1 Normalized water leaving reflectance insitu measurements from SeaBASS 
database 
 
Figure.2  Intercomparison of measurements to bio-optical estimator to verify the property 

that the estimator in general underestimates the water leaving signal. 

 

Figure 3 Cumulative distribution of residual error for both the bio-optical  estimator and 

the mean (threshold) estimator. Both Chesapeake Bay and global waters are given.  

 

Figure 4 Variability of Aerosol multiple scattering (log) epsilon (SeaDAS models) a) NIR 

b) SWIR 

 

Figure 5  SWIR epsilon factors ))2130,(log( λε  for different atmosphere models a)   

SeaDAS LUT b) . Aeronet LUT  

 

Figure 6.  Relationship between albedo and atmosphere path reflectance (blue/green) 

ratio as function of aerosol single scattering albedo.  

 

 

Figure 7. CDF for blue/green atmosphere ratio for aeronet site near Chesapeake.   

 

Figure 8. Fractional error of 760nm estimator using data from SeaBASS  database 

 

Figure 9 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the NIR retrieval algorithm on the SeaDAS 

aerosol model LUT with different bright pixel compensation levels a) 443nm b) 488nm 

c) 551nm 

 

Figure 10 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the SWIR  retrieval algorithm on the SeaDAS with 
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different 412nm  water leaving reflectance constraint levels a) 443nm b) 488nm c) 

551nm 

 

Figure 11 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the SWIR  retrieval algorithm on the SEADAS 

plus AERONET LUT with different 412nm  water leaving reflectance constraint levels a) 

443nm b) 488nm c) 551nm 

 

Fig. 12 AOD retrieval a) SWIR using SeaDAS models  and b) SWIR with regional 

models and 412nm constraint. 

 

Fig. 13 Assessment of AOD retrieval for matchup data sets.   a) SWIR using SeaDAS 

models  compared to  regional model b) Single Scatter Albedo for matchup cases 

 

Fig. 14 Comparison of  insitu measurements of normalized water leaving reflectance of 

SWIR retrieval using standard processing and regional model.  

 

Fig. 15 Mapping of insitu matchups : red is non absorbing cases in bay (1-4), green is 

absorbing cases in bay (5-10) , blue is nonabsorbing outside bay (11-17). Numbering 

taken from table 4 

 

Fig. 16  Intercomparison of TOA  Reflectance at 869nm to ensure preprocessing of the 

SWIR bands is in agreement with SeaDAS  a) SeaDAS  b) MODIS DAAC + Processing 

 

Fig. 17. Rrs reflectance comparisons a) constrained retrieval at 443nm b) SeaDAS 

retrieval at 443nm c) constrained retrieval at 551nm d) SeaDAS retrieval at 551nm 

 

Fig. 18. Aerosol Optical Depth  comparisons at 551 nm  a) constrained retrieval b) 

SeaDAS retrieval 



 28

Table 1 Parameters and ranges used In Radiative Transfer LUT 

 

Table 2 MODIS  Noise Equivalent Delta Reflectance NE∆ρ for a solar  angle of 60 

degrees 

 

Table 3 Fractional Normalized water leaving reflectance uncertainties 

 

Table 4 Matchups of insitu Remote Sensing Reflectance and SeaDAS retrievals including 

NIR and SWIR methods.  
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Fig. 1 Normalized water leaving reflectance insitu measurments 
from SeaBASS database.
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Fig.2  Intercomparison of measurements to bio-optical estimator to verify the property that the 

estimator in general underestimates the water leaving signal. 
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Fig. 3 Cumulative distribution of residual error for both the bio-optical  estimator and the 

mean (threshold) estimator. Both Chesapake Bay and global waters are given.  
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Figure 4 Variability of Aerosol multiple scattering (log) epsilon (SeaDAS models) a) NIR 

b) SWIR 
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Figure 5  SWIR epsilon factors ))2130,(log( λε  for different atmosphere models a)   

SeaDAS LUT b) . Aeronet LUT  
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Figure 6.  Relationship between albedo and atmosphere path reflectance (blue/green) 

ratio as function of aerosol single scattering albedo.  
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Figure 7. CDF for blue/green atmosphere ratio for aeronet site near chesepeake.  
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Figure 8. Fractional error of 760nm estimator using data from SeaBASS database 
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Figure 9 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the NIR retrieval algorithm with the SeaDAS 

aerosol model LUT’s with different bright pixel compensation levels a) 443nm b) 488nm 

c) 551nm

( )
wn

wn
ρ
ρσ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Wavelength = 443 nm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Wavelength = 488 nm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Wavelength = 551 nm

 

 
 f=.01
f=.1
f=1.0



 38

 

 
 

Figure 10 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the SWIR  retrieval algorithm on the SeaDAS with 

different 412nm  water leaving reflectance constraint levels a) 443nm b) 488nm c) 

551nm 
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Figure 11 Statistical cumulative distribution function  of fractional normalized water 

leaving reflectance uncertainties using the SWIR  retrieval algorithm on the SEADAS 

plus AERONET LUT with different 412nm  water leaving reflectance constraint levels a) 

443nm b) 488nm c) 551nm 
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Fig. 12 AOD retrieval a) SWIR using SeaDAS models  and b) SWIR with regional 

models and 412nm constraint. 
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Fig. 13 Assessment of AOD retrieval for matchup data sets.   a) SWIR using SeaDAS 

models  compared to  regional model b) Single Scatter Albedo for matchup cases 
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Fig. 14 Comparison of  insitu measurements of normalized water leaving reflectance of 

SWIR retrieval using standard processing and regional model.  
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Fig. 15 Mapping of insitu matchups : red is non absorbing cases in bay (1-4), green is 

absorbing cases in bay (5-10) , blue is non-absorbing cases outside bay (11-17). 

Numbering taken from table 4 
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Fig. 16  Intercomparison of TOA  Reflectance at 869nm to ensure preprocessing of the 

SWIR bands is in agreement with SeaDAS  a) SeaDAS  b) MODIS DAAC + Processing 

 

 
 

a) b) 
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Fig. 17. Rrs reflectance comparisons a) constrained retrieval at 443nm b) SeaDAS 

retrieval at 443nm c) constrained retrieval at 551nm d) SeaDAS retrieval at 551nm   

a) b) 

c) d) 
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Fig. 18. Aerosol Optical Depth  comparisons at 551 nm  a) constrained retrieval b) 

SeaDAS retrieval 
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Table 1 Parameters and ranges used In Radiative Transfer LUT 

 

Variable name Symbol Range 

Wavelength λ  (400:10:900,1240,1650,2130) 

Sensor viewing angle Vθ  (0,15,30,45,60) 

Solar angle Sθ  (0,15,30,45,60) 

Azimuth ϕ  (0,45,90,180) 

Aerosol optical thickness τ  (0.05:0.05:0.5 
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Table 2 MODIS  Noise Equivalent Delta Reflectance NE∆ρ for a solar  angle of 60 

degrees 

 

Band Wavelength [nm] NE∆ρ 

8 412 -41.818x10  

9 443 -41.019x10  

10 488 -58.10x10  

11 531 -56.01x10  

12 551 -56.38x10  

13 667 -53.39x10  

14 678 -52.93x10  

15 748 -54.63x10  

16 869 -54.08x10  

5 1240 -45.069x10  

6 1650 -43.618x10  

7 2130 -42.967x10  
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Table 3 Fractional Normalized water leaving reflectance uncertainties 

 
 

Atmospheric Correction 
 

Uncertainty % 
 

Atmospheric 
Correction 

Method 

 
Atmospheric 
LUT’s used 

 
Constraint 

used  
Band 

443nm 

 
Band 

488nm 

 
Band 

551nm 
 

 
Traditional 

NIR 

 
SeaDAS 

 
10% Bright 

pixel 
compensation 

 

 
25% 

 
13% 

 
4% 

 
Traditional 

NIR 

 
SeaDAS plus 

Aeronet 

 
10% Bright 

pixel 
compensation 

 

 
120% 

 
50% 

 
10% 

 
SWIR 

 

 
SeaDAS 

 
No constraint at 412nm 

 
20% 

 
10% 

 
3% 

 
SWIR 

 

 
SeaDAS 

 

005.005.)412(
)412(2

±=wn

wn

ρ
ρσ

 

 
20% 

 
10% 

 
3% 

 
SWIR 

 

 
SeaDAS 

 

003.005.)412(
)412(1

±=wn

wn

ρ
ρσ

 

 
18% 

 
8% 

 
3% 

 
SWIR 

 

 
SeaDAS plus 

Aeronet 
 

 
No constraint at 412nm 

 
90% 

 
35% 

 
10% 

 
SWIR 

 

 
SeaDAS plus 

Aeronet 
 

 

005.005.)412(
)412(2

±=wn

wn

ρ
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40% 

 
15% 

 
5% 
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SeaDAS plus 
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003.005.)412(
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±=wn

wn

ρ
ρσ

 

 
15% 

 
8% 

 
3% 
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Table 4 Matchups of insitu Remote Sensing Reflectance and SeaDAS retrievals from MODIS 

TERRA satellite  including both  NIR and SWIR atmosphere correction methods.  

 

     in situ Rrs values satellite Rrs values (SeaDAS) 
# 

Date Time Lat. Long
 

Rrs412 
 

Rrs443 
NIR 

Rrs412 
NIR 

Rrs443 
SWIR 

Rrs412 
SWIR 

Rrs443 
1 19-Jul-02 18:35:00 37.92 -76.19 

4.88E-04 
7.65E-04 

    1.39E-04 2.46E-04 
2 2-Oct-02 16:50:00 39.25 -76.24 9.52E-04 1.66E-03     -4.70E-04 -5.60E-04 
3 2-Oct-02 18:47:00 39.00 -76.36 3.20E-04 4.92E-04     -2.52E-03 -1.97E-03 
4 2-Oct-02 20:25:00 38.80 -76.45 4.03E-04 5.25E-04 -7.50E-04 -1.90E-04 8.50E-04 1.39E-03 
5 31-Mar-03 14:50:00 39.34 -76.18 2.24E-04 5.88E-04   -6.93E-05 -4.75E-05 
6 31-Mar-03 19:30:00 39.00 -76.37 1.49E-04 5.61E-04   1.90E-03 3.13E-03 
7 31-Mar-03 21:10:00 38.80 -76.44 2.95E-04 7.66E-04 -2.58E-03 -1.49E-03 -2.41E-03 -1.18E-03 
8 3-Oct-03 13:28:00 37.27 -76.15 1.54E-03 2.17E-03 -1.71E-03 -2.70E-04 7.20E-04 1.74E-03 
9 3-Oct-03 16:31:00 37.58 -76.17 1.11E-03 1.64E-03 -1.67E-03 -7.30E-04 -3.29E-03 -2.48E-03 

10 3-Oct-03 22:15:00 38.26 -76.34 5.09E-04 1.04E-03 -4.54E-03 -2.60E-03 -6.11E-03 -4.24E-03 
11 27-May05 15:40:00 36.91 -75.94 2.71E-03 3.43E-03 2.52E-03 3.05E-03 6.28E-03 6.91E-03 
12 27-May05 17:40:00 36.84 -75.88 3.24E-03 4.53E-03 1.44E-03 1.98E-03 5.76E-03 6.43E-03 
13 27-May05 19:09:00 36.83 -75.82 2.69E-03 3.69E-03 3.05E-03 3.84E-03 8.91E-03 9.55E-03 
14 27-May05 19:26:00 36.86 -75.78 2.89E-03 3.88E-03 3.61E-03 4.44E-03 9.36E-03 1.01E-02 
15 26-Jul-05 13:32:00 37.48 -75.53 2.39E-03 3.06E-03   1.22E-02 1.27E-02 
16 26-Jul-05 15:49:00 37.17 -75.39 2.51E-03 2.80E-03 2.81E-03 2.84E-03 1.22E-02 1.16E-02 
17 26-Jul-05 18:33:00 37.09 -75.71 2.27E-03 2.87E-03 5.00E-04 5.90E-04 1.25E-02 1.26E-02 

 

 
 

 


