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1. INTRODUCTION

The convective planetary boundary layer (CBL) is a
melting pot of chemical species—some are emitted by
surface sources, others are entrained from the overlying
free atmosphere, and still others are created by reactions
with other species or through photochemistry. This rich
soup of reactive species is stirred by turbulence; the de-
gree of commingling determined by the ratio of the time
scale of the turbulence mixing to the time scale of chem-
ical reaction, which is known as the Damköhler number.
The turbulence mixing time scale, in turn, is controlled
by the dominant eddy size and the turbulence intensity,
which are functions of normalized CBL depth and the
surface buoyancy flux. All in all, this makes for a com-
plicated set of interactions that need to be dealt with to
determine the vertical structure of mean concentrations
and turbulence statistics.

In order to deal with this complexity, and identify the
individual roles that turbulence and chemical reactivity
play, it is useful to simplify and parameterize the pro-
cesses so that models can be constructed that can be eas-
ily modified so that the parameter space can be easily
explored. With this in mind, we have developed a sim-
ple one-dimensional model, patterned after the surface-
layer models developed by Kristensen et al. (1997) for
one first-order destruction process and Kristensen and
Kirkegaard (2006) for one second-order destruction pro-
cess, and extended it to the entire CBL, parameterizing
the transport process throughout the CBL. We have ap-
plied it to a set of fast chemical reactants in the CBL that
involves the odd nitrogen species NO and NO2 (=NOx),
as well as O3. As we shall see this involves one first-
order process and one second-order process.

Our model is similar to that of Verver et al. (1997) and
Verver et al. (2000) who carried out similar studies us-
ing a second-order closure model to calculate profiles of
mean and turbulence statistics. However, instead of solv-
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ing the set of nine or more differential equations by finite
difference techniques at a specified set of levels through-
out the CBL as they did, we first reduce the set of equa-
tions to two equations for NO2 flux and concentration by
using mass conservation of the radicals involved in the
NO–NO2–O3 triad. We then obtain a numerical solu-
tion of these differential equations, and subsequently the
entire set of concentration and flux profiles are easily ob-
tained by substituting this solution into the equations for
NO and O3 fluxes and concentrations. The advantages
of this approach are: 1) we can easily specify whatever
vertical resolution we wish over any interval of the CBL,
including using very fine resolution to resolve detailed
structure in the surface layer; 2) solving the equations
requires little computer time and capacity; and 3) it is
easy to make changes in the transport and chemical pa-
rameterizations, and to quickly evaluate their impact on
the resulting concentration and flux profiles.

The eventual goal is to extend the model to include
volatile organic compounds (VOCs)—particularly those
emitted by vegetation (e.g. isoprene)—that react on time
scales comparable to CBL turbulent mixing times, to
provide a simple tool for rapid estimation of surface
emission rates, and possibly reaction rates, given mea-
surements of VOC fluxes or profiles (or both) at one or
more levels in the CBL. This approach again was antici-
pated by Verver et al. (2000), who also used their model-
ing technique to study the flux–gradient relationship for
isoprene in the planetary boundary layer.

In the following we first derive the equations for the
mean concentration and flux of a conserved species. In
this way we obtain a fundamental scheme to be applied
when the chemistry is included. At this stage the equa-
tions can be simplified by making them dimensionless
(section 3). A number of turbulence statistics profiles,
such as variances and heat flux, are prescribed and dis-
cussed in section 4. In section 5, the NOx– O3 triad is
discussed as a simple example of the interaction between
non-conserved species. With the tools to solve for con-
centrations and fluxes now in place, we outline in section
6 the procedure we have chosen for solving the equa-



tions. Finally, a sample case is presented in section 7.

2. CONSERVED SPECIES

We consider a horizontally homogeneous and station-
ary flow, and a Cartesian coordinate system where the
unit vectori is aligned with the mean wind,k vertical,
andj = k× i. The position is characterized by

x = xi +yj +zk (1)

and the instantaneous velocity vector by

ũ(x, t) = ũ(x, t) i + ṽ(x, t) j + w̃(x, t)k. (2)

In the CBL, the mean wind is assumed constant in mag-
nitude and direction, and the velocity field is decom-
posed into a mean and fluctuation:

ũ(x, t) = U i +u(x, t) i +v(x, t) j +w(x, t)k, (3)

where
U = | 〈ũ(x, t)〉 | (4)

is the space- and time-independent mean wind speed.
The potential temperaturẽΘ∗ and the conserved scalar

concentratioñsare similarly decomposed into means and
fluctuations

Θ̃ = Θ(z, t)+ϑ(x, t), (5)

where we allow for a temporal change of the mean poten-
tial temperature due to the temperature flux divergence
resulting from the difference between the surface heat
flux and entrainment of heat from the free troposphere
into the CBL, and

s̃= S(z)+s(x, t), (6)

where we neglect time change of the mean concentration
S since we are seeking steady-state solutions for mean
concentration and flux.

These two quantities follow the equations

DΘ̃
Dt

= νϑ∇2Θ̃ (7)

and
Ds̃
Dt

= νs∇2s̃, (8)

whereνϑ andνs are the molecular diffusivities, and

D
Dt

≡ ∂
∂t

+ ũ ·∇ =
∂
∂t

+U
∂
∂x

+u ·∇ (9)

∗We use the term potential temperature, but in the convective
boundary layer we really mean the virtual potential temperature, where
the effect of humidity on air density has been included.

is the Lagrangian time derivative. Now (7) and (8) be-
come{

∂
∂t

+U
∂
∂x

}
ϑ+w

∂Θ
∂z

+∇ · (uϑ)+
∂Θ
∂t

=

νϑ
∂2Θ
∂z2 +νϑ∇2ϑ (10)

and{
∂
∂t

+U
∂
∂x

}
s+w

∂S
∂z

+∇ · (us) = νs
∂2S
∂z2 +νs∇2s.

(11)
Taking the average of each of (10) and of (11), we get

∂〈wϑ〉
∂z

=−∂Θ
∂t

+νϑ
∂2Θ
∂z2 (12)

and
∂〈ws〉

∂z
= νs

∂2S
∂z2 . (13)

Integrating (12) and (13) leads to

〈wϑ〉= 〈wϑ〉◦−
zZ

0

∂Θ(z′, t)
∂t

dz′ +νϑ
∂Θ
∂z

∣∣∣
z︸ ︷︷ ︸

'0

(14)

and

〈ws〉= 〈ws〉◦ +νs
∂S
∂z

∣∣∣
z︸ ︷︷ ︸

'0

, (15)

where the molecular diffusion terms can be neglected. In
the well-mixed CBL the variation of the potential tem-
perature with height can be ignored, i.e.,

∂Θ
∂z

= 0. (16)

SinceΘ in the CBL is an increasing function of time, the
heat flux is, according to (14), a decreasing, linear func-
tion of height. As (15) shows, the flux〈ws〉 is constant
with height.

By subtracting these mean equations from the corre-
sponding full equations (10) and (11) we obtain equa-
tions for the fluctuating quantitiesϑ ands,{

∂
∂t

+U
∂
∂x

}
ϑ+∇ · (uϑ)− ∂

∂z
〈wϑ〉= νϑ∇2ϑ (17)

and{
∂
∂t

+U
∂
∂x

}
s+w

∂S
∂z

+∇ · (us)− ∂
∂z
〈ws〉= νs∇2s.

(18)



We also need the equation for the fluctuating vertical
velocity w. This can be obtained from the conserva-
tion equation for momentum—the Navier-Stokes equa-
tion. In a similar way as how we used (10) and (11) to
obtain (17) and (18), we get (e.g. Busch (1973)):{

∂
∂t

+U
∂
∂x

}
w+∇· (uw)− ∂〈w2〉

∂z
=

−1
ρ

∂p
∂z

+
g
T

ϑ+ν∇2w, (19)

whereρ is the air density,p the fluctuating part of the
static pressure,g the acceleration of gravity,T the aver-
age temperature of the boundary layer, andν the kine-
matic viscosity.

Combining (18) and (19) we obtain by averaging

〈w2〉 ∂S
∂z

+
∂
∂z
〈w2s〉=

−1
ρ

〈
s

∂p
∂z

〉
+

g
T
〈ϑs〉+νs〈w∇2s〉+ν〈s∇2w〉. (20)

Following Andŕe et al. (1976), Moeng and Wyngaard
(1989), and Verver et al. (1997) we use the parameter-
ization

1
ρ

〈
s

∂p
∂z

〉
=
〈ws〉
τ1

+b1
g
T
〈ϑs〉, (21)

where b1 ' 0.4 is a dimensionless constant andτ1 =
τ1(z) “the return to isotropy” time scale.

The sum of the last two terms in (20) can be combined
as

νs〈w∇2s〉+ν〈s∇2w〉=−(νs+ν)〈∇w ·∇s〉. (22)

For small-scale, isotropic turbulence this sum is zero,
as pointed out by Wyngaard (1982) (p. 82). Neglecting
third-order terms, (20) can be written as

〈w2〉
{

∂S
∂z

+
〈ws〉
〈w2〉τ1

}
= (1−b1)

g
T
〈ϑs〉. (23)

To close the problem we derive an equation for the
covariance〈ϑs〉 by combining (17) and (18):

〈wϑ〉∂S
∂z

+
∂
∂z
〈wϑs〉=−(νϑ +νs)〈∇ϑ·∇s〉. (24)

Following Verver et al. (1997) the right-hand side of (24)
can be expressed in terms of a height dependent dissipa-
tion time scaleτ4 = τ4(z):

(νϑ +νs)〈∇ϑ·∇s〉=
〈ϑs〉
τ4

. (25)

Finally, (24) can be written

〈wϑ〉∂S
∂z

+
〈ϑs〉
τ4(z)

= 0, (26)

where third-order terms have been neglected. With the
prescribed parameter functions〈w2〉, 〈wϑ〉, τ4(z), τ1(z),
and the constant(1−b1)g/T, (15), (23) and (26) can be
solved for the gradient∂S/∂z and the covariance〈ϑs〉.
As (15) shows, we have already one integral constraint,
namely the constant flux

〈ws〉= 〈ws〉◦. (27)

The two equations to be solved, therefore, are

〈w2〉
{

∂S
∂z

+
〈ws〉◦
〈w2〉τ1

}
= (1−b1)

g
T
〈ϑs〉. (28)

and (26).

3. DIMENSIONLESS FORMULATION

For computational purposes it is advantageous to re-
cast the equations in a dimensionless form. We have
three quantities which characterize the equations: the
height of the CBLh, the surface temperature flux〈wϑ〉◦,
and the buoyancy parameterg/T. They are all consid-
ered constant in space and quasi-constant in time. The
buoyancy parameter can safely be considered constant in
time, but the quantities〈wϑ〉◦ andh are of course vary-
ing with time in the convective boundary layer. However,
their rate of change is considered so small that here we
may take them as constants. We define the convective
velocity scale† by

w∗ =
(
(1−b1)

g
T
〈wϑ〉◦h

)1/3
, (29)

the dimensionless quantities by ζ
f
γ

 =

 z/h
〈ws〉/w∗
〈ϑs〉/T∗

 , (30)

and the parameters to be specified by
θ1

θ4

ω2

ϕT

 =


w∗τ1(z)/h
w∗τ4(z)/h
〈w2〉/w2

∗
〈wϑ〉/(w∗T∗)

 , (31)

where

T∗ =
〈wϑ〉◦

w∗
. (32)

The three equations (27), (28), and (26) now take the
form

f = f◦, (33)

ω2 ∂S
∂ζ

− γ =− f◦
θ1

, (34)

†For convenience we have included the factor(1−b1) ' 0.6 in the
definition in the convective velocity scale.



and

ϕT
∂S
∂ζ

+
γ

θ4
= 0. (35)

Specifying f◦, we may solve (34) and (35) for∂S/∂ζ
andγ to obtain

∂S
∂ζ
f◦

=− 1
θ1 (ω2 +θ4ϕT)

(36)

and
γ
f◦

=
θ4ϕT

θ1 (ω2 +θ4ϕT)
. (37)

The right-hand sides of these two equations are consid-
ered known and we see that (36) is a (dimensionless)
relation between the flux and the gradient of the corre-
sponding scalar; that is, it defines the dimensionless tur-
bulent diffusivity

χ(ζ)≡ K
w∗h

= θ1
(
ω2 +θ4ϕT

)
, (38)

whereK(z) is the turbulent diffusivity for passive scalars.

4. PARAMETERIZING THE STRUCTURE OF
THE CONVECTIVE BOUNDARY LAYER

The equations require profiles of the variances of the
vertical velocity〈w2〉 and the potential temperature〈ϑ2〉,
and of the temperature flux〈wϑ〉, in addition to the time
constantsτ1 andτ4.

We use the formulation by Lenschow et al. (1980) for
〈w2〉

ω2 =
〈w2〉
w2
∗

= 1.8
( z

h

)2/3 (
1−0.8

z
h

)2
. (39)

The variance profile used here converges to the free con-
vection limit in the surface layer; that is, for simplicity
we have neglected the contribution of shear production.
This means that for smallz/h, 〈w2〉/w2

∗ ∝ (z/h)2/3.
The heat flux〈wϑ〉 decreases linearly from a positive

value〈wϑ〉◦ at the ground to a negative value at the top
z= hof the boundary layer due to entrainment from aloft.
We apply the simple analysis by Tennekes (1973) and
assume the expression‡

ϕT =
〈wϑ〉
〈wϑ〉◦

=
〈wϑ〉
w∗T∗

= 1−1.2
z
h
. (40)

‡The factor 1.2 implies that the entrainment heat flux at the CBL top
is 20% (downwards) of the surface heat flux (upwards). It is not a fixed
fraction, but only a typical value; it varies with the turbulence intensity
in terms of e.g.w∗, the wind shear, and the temperature stratification in
the overlying free troposphere.

The time constants entering (21) and (25) are set to
(Verver et al., 1997)

τi =
10
ai

κz(1−z/h)
〈w2〉1/2

, i = 1,4, (41)

whereai are dimensionless constants andκ = 0.4 the
von Kármán constant. Inserting (39) we get

θi =
hτi

w∗
=

3
ai

( z
h

)2/3(
1− z

h

)
1−0.8

z
h

, i = 1,4. (42)

Inserting (39), (40), and (42) into (37) and (38) we
have determined the dimensionless temperature-scalar
covarianceγ and the dimensionless turbulent diffusivity
χ, except for the two dimensionless constantsa1 anda4.
However, we have one constraint in a relation between
these two constants, namely the functional form ofχ(ζ)
at the bottom of the boundary layer. We assume in ac-
cordance with Wyngaard and Brost (1984), and Holtslag
and Moeng (1991) that near the surface the diffusivity
approaches

χ(ζ) = ζ4/3. (43)

This is consistent with our expression forχ(ζ) that in-
cludes the parameter functions (39), (40), and (42) if the
identity

3
a1

(
1.8+

3
a4

)
= 1 (44)

is true. Verver et al. (1997) use(a1,a4) = (4.85,2.5).
These values do not fulfill (44). We find, with our
choice of dimensionless parameters in (39), (40), and
(42), that for (44) to be true, the only two possibilities are
(a1,a4) = (9,2.5) and (a1,a4) = (4.85,−16.4). Since
the second possibility is unphysical we use the first pos-
sibility in the following. The profiles of the dimension-
less diffusivity and the dimensionless temperature-scalar
covariance are shown in Figs. 1 and 2.

5. NON-CONSERVED SPECIES

When we have gases which interact, the rate equation
(8) must be generalized to account for the extra sources
and sinks inside the boundary layer. Instead of (8) we
write for N mutually interacting species

Ds̃i

Dt
= R̃i +νs∇2 s̃i , i = 1,2, . . . ,N (45)

where R̃i represents the rate of concentration increase
due to the interaction with all the other species and where
the kinematic diffusivityνs is assumed the same for all
the species. As in the case of conserved species, we de-
composẽsi into a mean and fluctuations:

s̃i(x,y,z, t) = Si(z, t)+si(x,y,z, t), i = 1,2, . . . ,N. (46)



Figure 1: The dimensionless diffusivity profileK/(w∗h).

Figure 2: Profile of the dimensionless ratio of the
temperature-scalar covariance and the constant scalar
flux (37).

In a similar way we decompose

R̃i(x,y,z, t) = Ri(z, t)+ r i(x,y,z, t), i = 1,2, . . . ,N,
(47)

where
Ri =

〈
R̃i

〉
. (48)

The equations for the meanSi and fluctuations̃si in
(45) become the following generalizations of (13) and
(18)

∂Si

∂t
+

∂〈ws〉
∂z

= Ri +νs
∂2S
∂z2 , (49)

where we have kept the prognostic term, and{
∂
∂t

+U
∂
∂x

}
si +w

∂Si

∂z
+∇ · (usi)−

∂
∂z
〈wsi〉=

r i +νs∇2si . (50)

Combining this equation with (17) and (19) we obtain

the three prognostic equations

∂
∂t
〈wsi〉+ 〈w2〉∂Si

∂z
+

∂
∂z
〈w2si〉=

−1
ρ

〈
si

∂p
∂z

〉
+

g
T
〈ϑsi〉+ 〈wri〉

−(ν+νs)〈∇w ·∇si〉︸ ︷︷ ︸
'0Wyngaard (1982)

, (51)

∂
∂t
〈ϑsi〉+ 〈wϑ〉∂Si

∂z
+

∂
∂z
〈wϑsi〉=

〈ϑsi〉+ 〈r iϑ〉− (νϑ +νs)〈∇ϑ ·∇si〉, (52)

and

∂
∂t
〈sisj〉+ 〈wsi〉

∂Sj

∂z
+ 〈wsj〉

∂Si

∂z
+

∂
∂z
〈wsisj〉=

〈r ir j〉−2νs〈∇si ·∇sj〉. (53)

These three equations (51), (52), and (53), together
with (49) constitute our general set of equations for
N interactive gas species in the CBL. To proceed we
must specify their interactions in terms of̃Ri for i =
1,2, · · · ,N. Below this is illustrated by the simple case
with N = 3.

The NOx–O3 triad reactions (Leighton, 1961) in a
sunlit CBL are

O(3P)+O2 → O3 (54)

NO+O3 → NO2 +O2 (55)

NO2 +hν → NO+O(3P). (56)

Herehν represents one quantum of ultraviolet light while
3P indicates that the atomic oxygen is in its ground state.

If there is a large supply of O3, as is often the case in
an urban environment, the process (55) will be the main
mechanism of NO removal. In rural and remote areas NO
will often be destroyed by other peroxy radicals (Ridley
et al., 1992). However, following Lenschow and Delany
(1987), we assume that a first simple approach to a cal-
culation of the mean concentrations and fluxes of O, O3,
NO, and NO2 can be based on the reactions (54), (55),
and (56). The corresponding dynamic equations govern-
ing these transformations, as well as the molecular dif-
fusion and turbulent transport of the four species O, O3,



NO, and NO2 are

D[O]
Dt

= − [O]
τO

+
[NO2]
τNO2

+νO
∂2[O]
∂xi∂xi

, (57)

D[O3]
Dt

= −k[O3][NO]+
[O]
τO

+νO3

∂2[O3]
∂xi∂xi

,(58)

D[NO]
Dt

= −k[O3][NO]+
[NO2]
τNO2

+νNO
∂2[NO]
∂xi∂xi

, (59)

D[NO2]
Dt

= − [NO2]
τNO2

+k[O3][NO]

+νNO2

∂2[NO2]
∂xi∂xi

. (60)

The quantitiesτO and τNO2
are the mean life-times for

the first-order processes,k the reaction constant for the
second-order process andνO, νO3

, νNO, and νNO2
the

molecular diffusivities.
In (57) the first two terms are large compared to the

other terms so there is an effective balance between de-
struction of O(3P) and creation of NO2. For this reason
O(3P) need not be further considered here, and we con-
sider only the one first-order time constantτ = τNO2

.
For convenience we introduce the dimensionless con-

centrations 
s̃1

s̃2

s̃3


= kτ×


[O3]

[NO]

[NO2]


, (61)

where all three quantities are functions of Cartesian po-
sition (x,y,z) and timet. The equation (8) for conserved
species must now be replaced by

Ds̃i

Dt
= (i2−3i +1) R̃ +νs∇2s̃i , i = 1,2,3, (62)

where the molecular diffusivity is assumed the sameνs

for all the scalars, and where

R̃ =
1
τ

( s̃1s̃2− s̃3) (63)

describes the reaction rates. Defining the sum concentra-
tions as

c̃i = s̃i + s̃3, i = 1,2 (64)

and neglecting molecular diffusion in (53), we get the
two conservation equations

Dc̃i

Dt
= 0, i = 1,2 (65)

of the two sum-concentrations. These behave, in other
words, like conserved species.

Similarly, we get for the sum-concentrations§

c̃i = Ci(z)+ci(x,y,z, t), i = 1,2. (66)

The rate equations (53) take the form{
∂
∂t

+U
∂
∂x

}
(Si +si)+w

∂Si

∂z
+∇ · (usi) =

(i2−3i +1) R̃ +νs∇2(Si +si), i = 1,2,3. (67)

Taking the mean of this equation, we get

∂Si

∂t
+

∂
∂z
〈wsi〉= (i2−3i +1)

〈
R̃

〉
+νs

∂2Si

∂z2︸ ︷︷ ︸
'0

. (68)

The equation for the fluctuating partsi is obtained
from (67) and (68):{

∂
∂t

+U
∂
∂x

}
si +w

∂Si

∂z
+∇ · (usi)−

∂
∂z
〈wsi〉=

(i2−3i +1)
S1s2 +S2s1−s3

τ
+νi∇2si . (69)

The conservation rule (65) then translates to

∂
∂z
〈wci〉= 0, i = 1,2. (70)

where
〈wci〉= 〈wsi〉+ 〈ws3〉, i = 1,2. (71)

The average of̃R is determined from (54):〈
R̃

〉
=

1
τ
{S1S2−S3 + 〈s1s2〉}. (72)

We neglect the third-order terms and, closely follow-
ing the procedure outlined in section 2, we obtain the
nine equations

∂Si

∂t
+

∂
∂z
〈wsi〉= (i2−3i +1)

S1S2−S3 + 〈s1s2〉
τ

,

i = 1,2,3, (73)

∂
∂t
〈wsi〉+ 〈w2〉

{
∂Si

∂z
+

〈wsi〉
〈w2〉τ1

}
=

(i2−3i +1)
S2〈ws1〉+S1〈ws2〉−〈ws3〉

τ
+(1−b1)

g
T
〈ϑsi〉, i = 1,2,3, (74)

§We are seeking steady-state solutions and letSi be time dependent
for computational reasons. However, the sum concentrationsCi are
assumed constant in time.



and

∂〈ϑsi〉
∂t

+ 〈wϑ〉∂Si

∂z
+
〈ϑsi〉
τ4(z)

= (i2−3i +1)
S2〈ϑs1〉+S1〈ϑs2〉−〈ϑs3〉

τ
,

i = 1,2,3, (75)

where, for computational purposes, the prognostic terms
are included.

The nine equations (73), (74) and (75) do not quite
constitute a closed system since (73) contains the scalar
covariance〈s1s2〉. However, we consider this quantity a
small perturbation which can be determined and included
later if we initially ignore it. Once we have determinedSi

in this way, we may derive all second-order scalar-scalar
covariances by means of (69). This will be shown in the
last part of this section.

Combining the three equations (74) we get, in view of
(66) and (71), the two equations

〈w2〉
{

∂Ci

∂z
+
〈wci〉◦
〈w2〉τ1

}
= (1−b1)

g
T
〈ϑci〉, i = 1,2.

(76)
Similarly we obtain from (75)

〈wϑ〉∂Ci

∂z
+
〈ϑci〉
τ4(z)

= 0, i = 1,2. (77)

We have here left out the prognostic terms and used
the fact that〈wci〉 = 〈wci〉◦ are constant with height. It
is of course no surprise that the last two equations have
exactly the same form as the equations (28) and (26) per-
taining to conserved scalars.

The equations for the derivation of the scalar-scalar
covariances are

∂
∂t
〈s2

i 〉+2〈wsi〉
∂Si

∂z

= 2(i2−3i +1)
S1〈sis2〉+S2〈sis1〉−〈sis3〉

τ
−2νs〈(∇si)2〉, i = 1,2,3, (78)

where third-order terms have been ignored. We follow
Verver et al. (1997) and use the parameterization of the
molecular term

2νs〈∇si ·∇sj〉=
〈sisj〉
τ3(z)

. (79)

We assume with Verver et al. (1997) thatτ3 is equal to
τ4. In an equilibrium state (70) then becomes

〈wsi〉
∂Si

∂z
= (i2−3i +1)

S1〈sis2〉+S2〈sis1〉−〈sis3〉
τ

− 〈si
2〉

2τ4(z)
, i = 1,2,3. (80)

We obtain three more equations from the sum-
concentrations(Ci ,ci) = (Si +S3,si +s3), i = 1,2 which
also follow (69) and (80), with the first term on the right-
hand side set equal to zero, if we replacesi by ci :

〈wci〉
∂Ci

∂z
=− 〈ci

2〉
2τ4(z)

, i = 1,2, (81)

〈wc1〉
∂C2

∂z
+ 〈wc2〉

∂C1

∂z
=−〈c1c2〉

τ4(z)
. (82)

The six equations (80), (81), and (82) can, with pa-
tience, great care and with Mathematica (Wolfram, 1999)
as a crutch, be solved for〈s1s2〉. First, however, we recast
the basic equations (73), (74) and (75) in a dimensionless
form as follows

θ
fi
Fi

γi

Γi

 =


w∗t/h

〈wsi〉/w∗
〈wci〉◦/w∗
〈ϑsi〉/T∗
〈ϑci〉/T∗

 (83)

and the dimensionless parameter, the Damköhler num-
ber,

D =
h

w∗τ
. (84)

In dimensionless form (73), (74) and (75) become

∂Si

∂θ
+

∂ fi
∂ζ

=

D × (i2−3i +1)(S1S2−S3 + 〈s1s2〉), (85)

∂ fi
∂θ

+ω2(ζ)
{

∂Si

∂ζ
+

fi
ω2θ1

}
=

D × (i2−3i +1)(S2 f1 +S1 f2− f3)+ γi (86)

and

∂γi

∂θ
+ϕT(ζ)

∂Si

∂ζ
+

γi

θ4
=

D × (i2−3i +1)(S2γ1 +S1γ2− γ3) . (87)

The summed equations become

∂Fi

∂ζ
= 0, (88)

ω2 ∂Ci

∂ζ
−Γi =− Fi

θ1
, i = 1,2 (89)

and

ϕT
∂Ci

∂ζ
+

Γi

θ4
= 0, i = 1,2. (90)

For D = 0, which corresponds toτ = ∞ (i.e. no decay of
NO2) we obtain the same three equations as (88), (89),



and (90) in their diagnostic form if we make the replace-
ment(Ci ,Fi ,Γi)→ (Si , fi ,γi).

Since Fi is constant with height we can determine
∂Ci/∂ζ andΓi as functions ofζ onceFi has been spec-
ified. From (89) and (90) we get

∂Ci

∂ζ
Fi

=− 1
θ1 (ω2 +θ4ϕT)

, i = 1,2 (91)

and
Γi

Fi
=

θ4ϕT

θ1 (ω2 +θ4ϕT)
, i = 1,2. (92)

These two equations are equivalent to (36) and (37).
The covariance〈s1s2〉 can now be determined from

(80), (81), and (82) in their dimensionless forms:

fiS′i
D

= (i2−3i +1){S1〈sis2〉+S2〈sis1〉−〈sis3〉}

−q〈s2
i 〉, i = 1,2,3 (93)

FiC′
i

D
=−q〈c2

i 〉=−q{〈s2
i 〉+2〈sis3〉+ 〈s2

3〉}, i = 1,2,

(94)
and

F1C′
2 +F2C′

1

2D
= −q〈c2

i 〉=−q{〈s1s2〉+ 〈s2s3〉

+〈s3s1〉+ 〈s2
3〉}, (95)

where

S′i =
∂Si

∂ζ
, (96)

C′
i =

∂Ci

∂ζ
, (97)

and

q =
1

2Dθ4
. (98)

We can now construct a set of six linear equations with
six unknowns, which are presented in Figure 3 We find
that

〈s1s2〉=− num
q(1+q+S1 +S2)(1+2q+S1 +S2)

, (99)

where

num = A11S2(1+S1)+A22S1(1+S2)
−A12(1+S1 +S2 +2S1S2)
+q{(A11+A22−2A12)(1+S1 +S2)−A12

−a11(1+S1)−a22(1+S2)+a33}
+q2{A11+A22−2A12−a11−a22}. (100)

Here we have used the notation

aii =
fiS′i
D

, i = 1,2,3, (101)

Aii =
FiC′

i

D
, i = 1,2, (102)

and

A12 =
F1C′

2 +F2C′
1

2D
. (103)

6. SOLVING THE EQUATIONS

Here we outline the procedure for solving for concen-
trations and fluxes, and demonstrate that we can reduce
the problem to three equations inS≡ S3, f ≡ f3, and
γ ≡ γ3 for the NO2 concentration.¶

First we note that we can make the replacements
( f1, f2) = (F1− f3,F2− f3) and(S1,S2) = (C1−S3,C2−
S3), where

Ci(ζ) = C◦
i +Fi

ζ◦Z
ζ

dζ′

θ1(ζ′)(ω2(ζ′)+θ4(ζ′)ϕT(ζ′))
,

i = 1,2, (104)

is obtained by integrating (91). The quantitiesC◦
i are the

sum concentrations at the reference levelζ◦, which is the
top of our model domain. We useζ◦ = 1/1.2, which is
the level at which the buoyancy flux changes sign. This is
also consistent with estimates of the thickness of the en-
trainment zone (Gryning and Batchvarova, 1994), which
is about as far as one can take a parameterized model of
this type.

Further,γ is eliminated by expressing it in terms ofF1,
F2 in the two relations (92) andf andSin the steady-state
form of (87) forγ (i = 3):

γ(ζ) =
θ4ϕT

{
D (F2S1 +F1S2)−θ1

(
ω2 +θ4ϕT

) ∂S
∂ζ

}
θ1{1+D(1+S1 +S2)θ4}

{
ω2 +θ4ϕT

} .

(105)
We have now reduced the problem to solving the two

equations (85) and (86) fori = 3:

∂S
∂θ

+
∂ f
∂ζ

= D(S1S2−S+ 〈s1s2〉), (106)

∂ f
∂θ

+ω2
{

∂S
∂ζ

+
f

ω2θ1

}
= D (S2 f1 +S1 f2− f )+ γ.

(107)
These two equations are solved forS and f by iteration
under the assumption that the covariance〈s1s2〉 can be
considered a perturbation which is neglected in the first
calculation and then, determined by (99), inserted in the
second calculation.

We are seeking a steady-state solution for the concen-
trations and fluxes. This is obtained by solving (106)

¶We have omitted the subscript 3 for convenience.





−(S2 +q) 0 0 −S1 0 1

0 −(S1 +q) 0 −S2 1 0

0 0 −(1+q) 0 S1 S2

−q 0 −q 0 0 −2q

0 −q −q 0 −2q 0

0 0 −q −q −q −q



×



〈s2
1〉

〈s2
2〉

〈s2
3〉

〈s1s2〉

〈s2s3〉

〈s3s1〉



=



f1S′1
D

f2S′2
D

f3S′3
D

F1C′
1

D

F2C′
2

D

F1C′
2+F1C′

1
2D


Figure 3: The matrix formulation of the six linear equations.

and (107) as partial differential equations with the time
θ and the heightζ as independent variables, using a re-
laxation scheme inθ. The boundary conditions for these
steady-state solutions are the surface fluxesf1, f2, and
f = f3 and three flux-concentration relations at the top
of the boundary layer. The first three are applied to ob-
tain F1 andF2 in (104). The next three are specifications
of fluxes at the top of the boundary layer in terms of a di-
mensionless entrainment velocityωe = we/w∗

‖ and the
differences between the concentrations in the free tropo-
sphere and those at a reference levelζ◦ inside the bound-
ary layer. To proceed we need expression forwe. The
entrainment process at the top of the CBL is independent
of the species, and, if we take the potential temperature
as a marker, we have

〈ϑw〉h =−we∆Θ, (108)

where∆Θ is the jump in potential temperature across the
top h of the CBL. In (40) we have already assumed that
〈ϑw〉h =−0.2〈ϑw〉◦ so that

we = 0.2
〈ϑw〉◦

∆Θ
. (109)

The magnitude of the the jump has been estimated by
Tennekes (1973) who expressed it in terms of the gra-
dient ΓΘ of the potential temperature in the free tropo-
sphere andh by

∆Θ =
1
7

ΓΘ h. (110)

Inserting this result into (101), we get

we = 1.4
〈wϑ〉◦
ΓΘh

=
1.4

1−b1
w∗


g
T

ΓΘ

w2
∗

h2


−1

, (111)

‖By convention the entrainment velocity is positive when the flux is
downward.

where the fraction inside the parenthesis can be iden-
tified as a Richardson number based on the potential-
temperature gradient in the free troposphere and free-
convection turbulence in a CBL of depthh . With the typ-
ical valuesΓΘ = 10−2 K m−1, h = 103 m, andw∗ = 1 m
s−1, we find thatωe = 7×10−3.

Denoting concentrations in the free atmosphere by an
asterisk superscript, we have:

f ◦1

f ◦2

f ◦


= ωe×


S◦1−S∗1

S◦2−S∗2

S◦−S∗, (i = 3)


. (112)

We may reduce the degrees of freedom by assuming pho-
tostationary equilibrium Leighton (1961) between the
three species:

kτ
[NO]∗[O3]∗

[NO2]∗
=

S∗1S∗2
S∗

= 1. (113)

We note that, the way the problem is now presented, it
is symmetric in the indices 1 and 2. This means that we
may always assume thatS◦1 ≥ S◦2 at the reference levelζ◦
and in the free troposphere.

7. SAMPLE CALCULATION

Here we show a set of plots from a sample run of
the model. The lower limit for the spatial integration
cannot be zero because concentrations are not finite at
z = 0. Therefore we have chosen the lower limit to be
ζ◦ = 10−5, which is consistent with surface layer for-
mulations which are considered to be valid only down
to a surface roughness length that is determined by the
properties of the surface. As noted earlier, the top of the
domain is atζ◦ = 1/1.2.



In figures 4, 5, 6, and 7 we useωe = 0.07 and
D = 4, and the boundary conditionsS∗1 = 1, S∗2 =
0.01, f1(ζ0) = −0.0036, f2(ζ0) = 0.0049, andf3(ζ0) ≡
f (ζ0) =−0.0001. In the first two figures, the covariance
term 〈s1s2〉 is set equal to zero, while in the second two
figures the term is included. We see that there is a small,
but significant, difference between the two sets of curves.

Figure 4: Concentration profiles with〈s1s2〉= 0.

Figure 5: Flux profiles with〈s1s2〉= 0.
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