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1. INTRODUCTION ing the set of nine or more differential equations by finite
difference techniques at a specified set of levels through-

The convective planetary boundary layer (CBL) is aout the CBL as they did, we first reduce the set of equa-
melting pot of chemical species—some are emitted bytions to two equations for N&Xlux and concentration by
surface sources, others are entrained from the overlyingsing mass conservation of the radicals involved in the
free atmosphere, and still others are created by reactiofrdO—-NO,—0O; triad. We then obtain a numerical solu-
with other species or through photochemistry. This richtion of these differential equations, and subsequently the
soup of reactive species is stirred by turbulence; the deentire set of concentration and flux profiles are easily ob-
gree of commingling determined by the ratio of the time tained by substituting this solution into the equations for
scale of the turbulence mixing to the time scale of chemNO and Q fluxes and concentrations. The advantages
ical reaction, which is known as the Datitder number.  of this approach are: 1) we can easily specify whatever
The turbulence mixing time scale, in turn, is controlled vertical resolution we wish over any interval of the CBL,
by the dominant eddy size and the turbulence intensityincluding using very fine resolution to resolve detailed
which are functions of normalized CBL depth and thestructure in the surface layer; 2) solving the equations
surface buoyancy flux. All in all, this makes for a com- requires little computer time and capacity; and 3) it is
plicated set of interactions that need to be dealt with tceasy to make changes in the transport and chemical pa-
determine the vertical structure of mean concentrationsameterizations, and to quickly evaluate their impact on
and turbulence statistics. the resulting concentration and flux profiles.

In order to deal with this complexity, and identify the  The eventual goal is to extend the model to include
individual roles that turbulence and chemical reactivity volatile organic compounds (VOCs)—particularly those
play, it is useful to simplify and parameterize the pro- emitted by vegetation (e.g. isoprene)—that react on time
cesses so that models can be constructed that can be eagales comparable to CBL turbulent mixing times, to
ily modified so that the parameter space can be easilgrovide a simple tool for rapid estimation of surface
explored. With this in mind, we have developed a sim-emjssion rates, and possibly reaction rates, given mea-
ple one-dimensional model, patterned after the surfacesurements of VOC fluxes or profiles (or both) at one or
layer models developed by Kristensen et al. (1997) foimore levels in the CBL. This approach again was antici-
one first-order destruction process and Kristensen angated by Verver et al. (2000), who also used their model-
Kirkegaard (2006) for one second-order destruction proing technique to study the flux—gradient relationship for
cess, and extended it to the entire CBL, parameterizingsoprene in the planetary boundary layer.
the transport process throughout the CBL. We have ap-
plied it to a set of fast chemical reactants in the CBL that
involves the odd nitrogen species NO and NGNOy),

In the following we first derive the equations for the
mean concentration and flux of a conserved species. In
e : this way we obtain a fundamental scheme to be applied
as well as @ As we shall see this involves one first- \ ho, the chemistry is included. At this stage the equa-
order proces; an 9”8 second-order process. tions can be simplified by making them dimensionless
Our model is similar to that of Verver et al. (1997) and (gection 3). A number of turbulence statistics profiles,
Verver et al. (2000) who carried out similar studies us-g,ch as variances and heat flux, are prescribed and dis-
ing a second-order closure model to calculate profiles of,ssed in section 4. In section 5, the N@; triad is
mean and turbulence statistics. However, instead of solVgiscyssed as a simple example of the interaction between
*Corresponding address:Leif Kristensen, Risg DTU National non-co_nserved SPECIES. \N_Ith the tools to S.Olv.e for cpn-
Laboratory for Sustainable Energy, Roskilde, Denmark. E-mail: C€Ntrations and fluxes now in place, we outline in section
leif.kristensen@tele2.dk 6 the procedure we have chosen for solving the equa-




tions. Finally, a sample case is presented in section 7. is the Lagrangian time derivative. Now (7) and (8) be-

come
2. CONSERVED SPECIES
g+U 9 8+Wa—e+D-(u8)+a—e =
. . . ot 0X 0z ot
We consider a horizontally homogeneous and station- ,
ary flow, and a Cartesian coordinate system where the v,ga—@ T vy 028 (10)
unit vectori is aligned with the mean wind vertical, 07
andj =k x i. The position is characterized by and
X =Xi+yj+zk (1) 2
- . {a_|_U 0}5+W(B+D.(US):VSOS+VSDZS.
and the instantaneous velocity vector by ot 0x 0z 0z 1)
U(x,t) = U(X,t) i+ V(x,t)j +W(x,t) k. (2) Taking the average of each of (10) and of (11), we get
In the CBL, the mean wind is assumed constant in mag- owy) 9o 0’0 (12)
nitude and direction, and the velocity field is decom- 0z ot %922
posed into a mean and fluctuation:
and
U(x,t) =Ui+u(x,t)i+vxt)j+wxk, (3) ows _ 9°S (13)
0z S0z
where .
- Integrating (12) and (13) leads to
U= {a(x.0)| @ [meoratng(2)and(1s)
is the space- and time-independent mean wind speed. i 00(Z,1) 00
The potential temperatu@* and the conserved scalar (wd) = (wd)o _/ ot dz +Vf’§ ‘Z (14)
concentratiogare similarly decomposed into means and 0 ~
fluctuations N
O =0(zt)+3(x,t), (5) and
where we allow for a temporal change of the mean poten- (ws) = (W), +VSE‘ , (15)
tial temperature due to the temperature flux divergence —
resulting from the difference between the surface heat =0
flux and entrainment of heat from the free tropospherevhere the molecular diffusion terms can be neglected. In
into the CBL, and the well-mixed CBL the variation of the potential tem-
_ perature with height can be ignored, i.e.,
§=S(2) +s(x,t), ()
00
where we neglect time change of the mean concentration 5 =Y (16)
Ssince we are seeking steady-state solutions for mean
concentration and flux. Since® in the CBL is an increasing function of time, the
These two quantities follow the equations heat flux is, according to (14), a decreasing, linear func-
_ tion of height. As (15) shows, the fluxvs) is constant
be vy 028 ) with height. _ .
Dt By subtracting these mean equations from the corre-
and sponding full equations (10) and (11) we obtain equa-
DS tions for the fluctuating quantities ands,
~ = Vs[|2§a (8)
Dt o . a 9 ,
wherevy andvs are the molecular diffusivities, and gt TY ag (90 (Ud) — (W) =vs0% (17)
D 4 0 0
— =_4U0-0=— _ . and
Dt_at+u d at+UaX+u g 9

*We use the term potential temperature, but in the convective g +U 3 S+ W(lS_’_ - (us) — 3<WS> = VSDZS.
boundary layer we really mean the virtual potential temperature, where 0x 0z 0z
the effect of humidity on air density has been included. (18)



We also need the equation for the fluctuating verticalwhere third-order terms have been neglected. With the
velocity w. This can be obtained from the conserva- prescribed parameter functions?), (Wd), 14(2), 11(2),
tion equation for momentum—the Navier-Stokes equa-and the constar{tt — b;)g/T, (15), (23) and (26) can be
tion. In a similar way as how we used (10) and (11) tosolved for the gradiendS/dz and the covariancéds).

obtain (17) and (18), we get (e.g. Busch (1973)): As (15) shows, we have already one integral constraint,
namely the constant flux
ngUg w0 (uw)fLW2> =
at ' ox 0z (ws) = (ws)o. (27)
,}? + 9 29 +v%w, (19)  The two equations to be solved, therefore, are
p

wherep is the air densityp the fluctuating part of the
static pressurgy the acceleration of gravity, the aver-
age temperature of the boundary layer, anithe kine- and (26).
matic viscosity.

Combining (18) and (19) we obtain by averaging 3. DIMENSIONLESS FORMULATION

w?) oS + 2(\/\/2s> = For computational purposes it is advantageous to re-
0z * 0z cast the equations in a dimensionless form. We have
_= <s> + 9<,95> +vs(W%s) +v(s?w). (20) three quantities which characterize the equations: the
p T height of the CBLh, the surface temperature flgw3).,
Following Andié et al. (1976), Moeng and Wyngaard and the buoyancy parametgfT. They are all consid-
(1989), and Verver et al. (1997) we use the parameter® ered constant in space and quasi-constant in time. The

ization buoyancy parameter can safely be considered constant in
ap {ws) g time, but the quantitieswd), andh are of course vary-
p < az> T +by <‘95> (21) ing with time in the convective boundary layer. However,

their rate of change is considered so small that here we

wher? by ~ 0.4 is a dlmen“s[onless constant angl= may take them as constants. We define the convective
11(2) “the return to isotropy” time scale. velocity scalé by

The sum of the last two terms in (20) can be combined
as 1/3
~ (a-bFworn) " @9
Vs(WI%S) +v(sTPW) = —(vs+V) (Ow-Os).  (22) _ _ N

the dimensionless quantities by
For small-scale, isotropic turbulence this sum is zero,
as pointed out by Wyngaard (1982) (p. 82). Neglecting ¢ z/h
= (we/w. ¢, (30)

third-order terms, (20) can be written as f

05w % (9s) /T
ws
(wP) {az + W } =(1-by) $<35>- (23)  and the parameters to be specified by
To close the problem we derive an equation for the gl W*HEZ;;E
covariancgds) by combining (17) and (18): 4\ _ WiTa(2
g9s) by g (17) and (18) o ) w2 [ (31)
9)2 4 % w99 = vy +va)(C9-09. (29 br) LT
where
Following Verver et al. (1997) the right-hand side of (24) T — (Wd)o (32)
can be expressed in terms of a height dependent dissipa- : W,
tion time scalery = 14(2): The three equations (27), (28), and (26) now take the
9s) form
(vy +Vvs)(O09-0Os) = - (25) f=f, (33)
4
0S f,
Finally, (24) can be written W’ - Y="g, (34)
0S <’95> TFor convenience we have included the fadtbr by) ~ 0.6 in the
<W8> 0z Tz 14(2) =9 (26) definition in the convective velocity scale. '



and The time constants entering (21) and (25) are set to
¢T678+ Y _o 35) (Ververetal, 1997)

o B 10kz(1-z/h) .
Specifying f,, we may solve (34) and (35) f@S/a¢ U= w2z =14,
andy to obtain

(41)

where a; are dimensionless constants awd= 0.4 the

0S von Karman constant. Inserting (39) we get
a 1 2
e — 36 z\2/3 z
fo 81 (WP + 6407) (39) o Mi_3 (ﬁ) (175) i—14  (42)
\- = 7 Bt I

and wo & 108~

Yy 847 (37) h

fo  01(wP+0407) Inserting (39), (40), and (42) into (37) and (38) we

dhave determined the dimensionless temperature-scalar

. . . ovariancey and the dimensionless turbulent diffusivit
ered known and we see that (36) is a (dmensmnlessi o y

lation bet the I dth dient of th , except for the two dimensionless constamtanday.
relation between the Tiux an € gradient ot the Corre'However, we have one constraint in a relation between

sponding scalar; that is, it defines the dimensionless turt-hese two constants, namely the functional forny ()

The right-hand sides of these two equations are consi

bulent diffusivity at the bottom of the boundary layer. We assume in ac-
K cordance with Wyngaard and Brost (1984), and Holtslag
X0 =,7=0 (w*+ 647 , (38)  and Moeng (1991) that near the surface the diffusivity
: approaches
wherekK (2) is the turbulent diffusivity for passive scalars. X(Q) =T¥3. (43)
This is consistent with our expression ) that in-
4. PARAMETERIZING THE STRUCTURE OF cludes the parameter functions (39), (40), and (42) if the
THE CONVECTIVE BOUNDARY LAYER identity 3 3
The equations require profiles of the variances of the a (1'8+ a4> =1 (44)

vertical velocity(w?) and the potential temperatuf®®), s true. Verver et al. (1997) us@y,a4) = (4.85,2.5).
and of the temperature fluxv3), in addition to the time  These values do not fulfill (44). We find, with our
constants; andts. choice of dimensionless parameters in (39), (40), and
We use the formulation by Lenschow et al. (1980) for (42, that for (44) to be true, the only two possibilities are
(w?) (a1,a4) = (9,2.5) and (ag,as) = (4.85 —16.4). Since
the second possibility is unphysical we use the first pos-
, (W) 77 2/3 7\ 2 sibility in the following. The profiles of the dimension-
w=-—--=18 (—) (1— 0.87) . (39) less diffusivity and the dimensionless temperature-scalar
w h h : B
* covariance are shown in Figs. 1 and 2.

The variance profile used here converges to the free con-

vection limit in the surface layer; that is, for simplicity 5. NON-CONSERVED SPECIES

we have neglected the contribution of shear production.

This means that for smatyh, (w?)/w? 0 (z/h)?/. When we have gases which interact, the rate equation
The heat fluxwd) decreases linearly from a positive (8) must be generalized to account for the extra sources

value (Wd), at the ground to a negative value at the topand sinks inside the boundary layer. Instead of (8) we

z=hof the boundary layer due to entrainment from aloft. write for N mutually interacting species

We apply the simple analysis by Tennekes (1973) and D§ -~
assume the expression i R +Vvs1%§, i=12,...,N (45)
o1 — wd) _ (wd) _ 1-12% (40) where &, represents the rate of concentration increase
o i T ue to the interaction with all the other species and where
(Wd)o W, h d hei ion with all the oth ies and wh

*The factor 1.2 implies that the entrainment heat flux at the CBLtopthe klnemanc dlfoSIVItWS is assumed the Sam.e for all
is 20% (downwards) of the surface heat flux (upwards). Itis not a fixedtN€ SPecies. As in the case of conserved species, we de-

fraction, but only a typical value; it varies with the turbulence intensity COMpPOSES into a mean and fluctuations:
in terms of e.gw., the wind shear, and the temperature stratificationin )
the overlying free troposphere. s(x,y,zt)=S(zt)+s(xy,zt), i=1,2,...,N. (46)
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the three prognostic equations

(ws) + ?) 52+ 2 wPs) =

2 (55 )+ 2ios) + oy
—(V+vs)(Ow-Os), (51)

~0Wyngaard (1982)

0 S 0
a<33> +<W8>E + a*Z<W193> =

(8s)+(rid) — (vo +vs)(09-0s), (52)

and
. 95 (0S5 0y
E<SSJ>+<WS> az +<WSJ> az + aZ<WSSJ> -
(rirj) —2vs(ds - Os;j). (53)

These three equations (51), (52), and (53), together
with (49) constitute our general set of equations for
N interactive gas species in the CBL. To proceed we
must specify their interactions in terms & for i =
1,2,---  N. Below this is illustrated by the simple case

Figure 2: Profile of the dimensionless ratio of the V\;ithN:3.
temperature-scalar covariance and the constant scalar

flux (37).

In a similar way we decompose

RL(X7yvzat):%(Zat)+ri(xvyaz7t)a i:1727"'7N7
(47)
where N
%= (R;). (48)

The equations for the megh and fluctuations in

(45) become the following generalizations of (13) and

(18)
05 odws _ 09°S
At TRV 49
where we have kept the prognostic term, and
0 0 0S5 0
{atJrU ax}s +WE+D-(u3) - a—z(ws> =
ri +vs0°s. (50)

The NQ—0O;3 triad reactions (Leighton, 1961) in a
sunlit CBL are

oGP +0; — O3 (54)
NO+0O3 — NO;+0, (55)
NO;+hv — NO+OCP). (56)

Herehv represents one quantum of ultraviolet light while
3P indicates that the atomic oxygen is in its ground state.

If there is a large supply of §) as is often the case in
an urban environment, the process (55) will be the main
mechanism of NO removal. In rural and remote areas NO
will often be destroyed by other peroxy radicals (Ridley
et al., 1992). However, following Lenschow and Delany
(1987), we assume that a first simple approach to a cal-
culation of the mean concentrations and fluxes of @, O
NO, and NQ can be based on the reactions (54), (55),
and (56). The corresponding dynamic equations govern-
ing these transformations, as well as the molecular dif-

Combining this equation with (17) and (19) we obtain fusion and turbulent transport of the four species @, O



NO, and NQ are of the two sum-concentrations. These behave, in other
words, like conserved species.

DIO] _ [0, NO,] v 9’[0] 57 Similarly, we get for the sum-concentratiéns
Dt To To, 0X;0X _
DIO 0) 620 Ei:Ci(Z)+Ci(X7yaz7t)7 |:1a2' (66)
O~ kogno+ D 10, 21 (o)
D[NE)] [T\(I)O | XioX The rate equations (53) take the form
Dt = *k[o3][No] + T 2 0 0 S
N2 {+U}@+&%Hv +0-(us) =
9?[NO 5o ot o0x 0z
TN o (59) (2-3i+1) R +vs(2(S+s), =123 (67)
DINO NO
[Dt 2~ [N, k[O3][NQ] Taking the mean of this equation, we get
Tho,
0%[NOy) S o P ~ 0°S
—_. 60 =4 T ws) = (i2— il
+Vno, 3%0% (60) 3 +az<ws> (i 3|+1)<17{>+vs 372 (68)
The quantitiesto and tyo, are the mean life-times for =0

the first-order processek the reaction constant for the  1pe equation for the fluctuating past is obtained
second-order process amg@, Vo,, Vno, andvyo, the  fom (67) and (68):

molecular diffusivities.

0
S+w—+0-(us)—

In (57) the first two terms are large compared to the 0 U 0 0S N
other terms so there is an effective balance between de- ot + % 0z az<WS> -
struction of G3P) and creation of N@. For this reason o S+ S8 — S
O(®P) need not be further considered here, and we con- (i7-3i+1) I E—— Ms. (69)

sider only the one first-order time constant Tyo,.
For convenience we introduce the dimensionless conThe conservation rule (65) then translates to
centrations

a%(wq) =0, i=12 (70)
S (O3]
where
&% (=Kixq [NO| ¢ (61) (wg) = (ws) + (ws), i=1,2 (72)
% INO] The average off is determined from (54):
~ 1
where all three quantities are functions of Cartesian po- <5’i> =188 -S+{a%)}) (72)
sition (x,y,z) and timet. The equation (8) for conserved
species must now be replaced by We neglect the third-order terms and, closely follow-
_ ing the procedure outlined in section 2, we obtain the
% — (|2 —3i+ 1) i_i_VSDZ’V’ i — 172’ 3’ (62) nine equations
- SS-S+ (a1
where the molecular diffusivity is assumed the same 3~ + 5-(WS) = (i*=3i+1) . < >,
for all the scalars, and where i=1,23 (73)
~ 1 o -
R=7(5%-%) (63) 5 s ws)
WS
| | y o)+ (92 { G-+ | =

describes the reaction rates. Defining the sum concentra- ot 0z (W)1y
tions as o S(Ws) + S (W) — (Wsg)

G=§+% i=12 (64) (F-38i+1) =
and neglecting molecular diffusion in (53), we get the +(1—b1)%<3$>7 =123, (74)

two conservation equations

S\We are seeking steady-state solutions an6|be time dependent
D¢ . for computational reasons. However, the sum concentratprsse
Dt =0, i=12 (65) assumed constant in time.



and We obtain three more equations from the sum-
concentrationsC;,c) = (S +S3,5 + ), i = 1,2 which

A%s) 4 <W19>‘LSI 405 also follow (69) and (80), with the first term on the right-
o 0z Ta(2) hand side set equal to zero, if we replacby ¢;:

_ 2 _ai .y 2(081) +S1(F%) — (¥ss)
=(i2-3i+1) T , e (2)
. Wwg)— =— ,i=12, (81)
=123, (75) 0z 2u(

where, for computational purposes, the prognostic terms 0C, 0Ct  (CCp)

are included. (wen) 5, +Wea) 5 = -, o (82)

Thg nine equations (73), (74) and (75) QO not quite o six equations (80), (81), and (82) can, with pa-
constitute a closed system since (73) contains the scalgfynce great care and with Mathematica (Wolfram, 1999)
covariance(s;s;). However, we consider this quantity a s acrutch, be solved f¢g; ). First, however, we recast

small perturbation which can be determined and include he basic equations (73), (74) and (75) in a dimensionless
later if we initially ignore it. Once we have determin§d form as follows

in this way, we may derive all second-order scalar-scalar

covariances by means of (69). This will be shown in the 0 w,t/h
last part 'of this section. . o f; (ws) /w,
Combining the three equgtlons (74) we get, in view of = =< (WG)o/Wi (83)
(66) and (71), the two equations Vi (9s)/T.
I 86/ T,
oG | (wa)o g . '
(W) {az + Wt [ (1-by)3(c), i=12 and the dimensionless parameter, the Danfér num-
(76)  Dber,
Similarly we obtain from (75) D= h . (84)
W, T
<wﬁ>? <’9(Ci§ =0, i=12 (77)  Indimensionless form (73), (74) and (75) become
z T4z

0S5 Of
We have here left out the prognostic terms and use% + ajl =

the fact thatwg) = (wg), are constant with height. It P

is of course no surprise that the last two equations have Dx (i =3i+1)(S% S+ (s1%2), (85)
exactly the same form as the equations (28) and (26) per-

taining to conserved scalars.

The equations for the derivation of the scalar-scalardfi (2 ajJr il
covariances are 00 0 w0y
P 3 Dx (i2-3i4+1) (Sf1+Sifo— f3)+Vi (86)
2@ rawe D d
o2 i,y S1{SS2) +S(ss1) — (SS3) "
=2(i-3i+1) - dyi 4 (Z)aeryi B
208, i=123 (78) 90 TTTTOC8s
D x (i=3i+1) (SV1+Siy2 - Vs).- (87)

where third-order terms have been ignored. We follow
Verver et al. (1997) and use the parameterization of th&'he summed equations become

molecular term
oF

. L (ss) Fan 0, (88)
2vs(Os - Osj) = 5@ (79)
, . wzaci .
We assume with Verver et al. (1997) thatis equal to 5 li=—5, 1=12 (89)
M ¢ 01
T4. In an equilibrium state (70) then becomes and
0S o o, . SusS) +S(ss) — (SSs) o Ti_4
(s?) For D = 0, which corresponds to= c (i.e. no decay of

_2T4(z)’ 1=1,2.3.(80) NO;) we obtain the same three equations as (88), (89),



and (90) in their diagnostic form if we make the replace-

ment(CG;,F,Ti) — (S, fi,vi).

_FRd

i=12
@7 | )&y

Aji

(102)

Since F is constant with height we can determine gnd

0C;/0C andT; as functions o onceF; has been spec-
ified. From (89) and (90) we get

e}
0l 1 .
- ___ - @ =12 91
F 9;]_((,'.)2-"-94(1)1')7 I ’ (o1)
and _ 9
li_  Bar 1,2. (92)

F 01(0?+6a7)

These two equations are equivalent to (36) and (37).
The covariancgs;s;) can now be determined from
(80), (81), and (82) in their dimensionless forms:

% = (2-3i+1){Si(s%) + S (s51) — (%)}
—q<s12>, i=1,23 (93)
RCl 2 i
D :—q<C|>Z—q{<§2>+2<39\3>+<%>}7 |:1,2,
(94)
and
% = —q(?) = —q{(s1%) + (S:%%)
+(s3s1) + ()}, (99)
where 3S
§= e (96)
,_ G
cl = T (97)
and
_ 1 98)
9= 208, (

_RG+RG

A
12 D

(103)

6. SOLVING THE EQUATIONS

Here we outline the procedure for solving for concen-
trations and fluxes, and demonstrate that we can reduce
the problem to three equations 8= S3, f = f3, and
y = ys for the NG, concentratiori.

First we note that we can make the replacements
(fla f2) = (Fl_ f37 F2_ f3) and(slvsz) = (Cl_ S3,C2—

S3), where
ZO
C-(Z)—C-°+F/ ac
' P ] 01(¢') (w?(T) +04(7)07(T))’

i=1,2,

(104)

is obtained by integrating (91). The quantit&sare the
sum concentrations at the reference lévewhich is the
top of our model domain. We ug€g = 1/1.2, which is
the level at which the buoyancy flux changes sign. This is
also consistent with estimates of the thickness of the en-
trainment zone (Gryning and Batchvarova, 1994), which
is about as far as one can take a parameterized model of
this type.

Further,yis eliminated by expressing it in termsef,
F in the two relations (92) antlandSin the steady-state
form of (87) fory (i = 3):

0S

B4t {@(Fzsl +F1S) — 61 (w?+0407) 0(}

01 {1+ D(1+ S+ )04} {0 +0ar }(105)

¥(Q) =

We can now construct a set of six linear equations with  \yis have now reduced the problem to solving the two
six unknowns, which are presented in Figure 3 We ﬁ”dequations (85) and (86) for= 3:

that
num
<SlSQ>__q(1+q+Sl+Sz)(1+2quSl+32)’ (29
where
num = ApnS(1+5)+A»%S(1+S)
—A(1+ S+ S +25S)

+0{(A11+ A —2A)(1+ S+ ) — A2
—a11(1+8) —ax(1+S) +ass}

+ 9P { A1+ Anz — 2A12 — ag1 — Ay} (100)
Here we have used the notation
fi .
a="S i—123 (101)

S of

% + & = @(SlSZ -S4+ <Sls2>)» (106)

of  ,fos f | _
(107)

These two equations are solved and f by iteration
under the assumption that the covariagsges;) can be
considered a perturbation which is neglected in the first
calculation and then, determined by (99), inserted in the
second calculation.

We are seeking a steady-state solution for the concen-
trations and fluxes. This is obtained by solving (106)

we have omitted the subscript 3 for convenience.



~(®+9) 0 0 -s 0 1 () 55
0 —(Si+0q) 0 - 1 0 ($) L
0 0 -1+q) 0 S S y () | B
—q o —qa 0 0 -2 oo || S
0 —q g 0 -2 0 (5:53) R
0 0 -4 -4 -9 -q (Sas1) Bepna

Figure 3: The matrix formulation of the six linear equations.

and (107) as partial differential equations with the timewhere the fraction inside the parenthesis can be iden-
0 and the height as independent variables, using a re-tified as a Richardson number based on the potential-
laxation scheme if. The boundary conditions for these temperature gradient in the free troposphere and free-
steady-state solutions are the surface flukesf,, and  convection turbulence in a CBL of degth With the typ-

f = f3 and three flux-concentration relations at the topical valuesS e = 102K m~1, h=10°m, andw, =1 m

of the boundary layer. The first three are applied to ob-s~, we find thatwe = 7 x 103,

tain F; andF, in (104). The next three are specifications Denoting concentrations in the free atmosphere by an
of fluxes at the top of the boundary layer in terms of a di-asterisk superscript, we have:

mensionless entrainment velociiy = we/w. ! and the

differences between the concentrations in the free tropo- fo

sphere and those at a reference I&éehside the bound- 1 S-S

ary layer. To proceed we need expressionvigr The

o = W X _ . 112
entrainment process at the top of the CBL is independent f2 we %9 (112)
of the species, and, if we take the potential temperature fo .S (i—3
as a marker, we have -S, (=9
(BW)h = —WeAO, (108)  We may reduce the degrees of freedom by assuming pho-

tostationary equilibrium Leighton (1961) between the
whereAQ is the jump in potential temperature across thethree species:
top h of the CBL. In (40) we have already assumed that

(dw)n = —0.2(dw), so that NO["[Gs]" _ SS,
kt NS = 1 (113)
Bw),
We = 0.2 AO (109)  we note that, the way the problem is now presented, it

is symmetric in the indices 1 and 2. This means that we

The magnitude of the the jump has been estimated by,ay always assume that > S; at the reference levép
Tennekes (1973) who expressed it in terms of the gragnd in the free troposphere.

dientl'g of the potential temperature in the free tropo-

sphere anth by 1 7. SAMPLE CALCULATION
AO = = Moh. (110)
Here we show a set of plots from a sample run of
the model. The lower limit for the spatial integration
1 cannot be zero because concentrations are not finite at
z= 0. Therefore we have chosen the lower limit to be

Inserting this result into (101), we get

wo 14 Ire
wd)o 14 | T

we=14 n b W . (111) T = 1075 which is consistent with surface layer for-
e 1-by fg mulations which are considered to be valid only down
h to a surface roughness length that is determined by the

IBy convention the entrainment velocity is positive when the flux is prope_rtigs of the surface. As noted earlier, the top of the
downward. domainisat® =1/1.2.



In figures 4, 5, 6, and 7 we us& = 0.07 and \\ /
D = 4, and the boundary condition§; = 1, S = 01
0.01, f1(Zo) = —0.0036, f2(Zo) = 0.0049, andfz(Zo) = ' ‘\
(o) = —0.0001. In the first two figures, the covariance 0.01 |
term (s1S,) is set equal to zero, while in the second two ' | N /
figures the term is included. We see that there is a small, | ,,, / \
but significant, difference between the two sets of curves. §i \‘-«52\< / 53
i ] 0.0001 T
[ i 1 __"'"_-. \h'—-
0L / 0 02 04 06 08 1 1.2
[ ';\ / 1 Dimensionless concentrations S;
0.01 ¢ i \
¢ i I‘ N Figure 6: Concentration profiles witls;s,) included.
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Figure 4: Concentration profiles witls;s,) = 0. i )1 \ £ /zﬁ
0.0001
/ \. /
i %
i -‘Qﬂ —0.008 —0.006 —0.004 —0.002 0  0.002 0.004 0.006
0.1 { Dimensionless fluxes f;
0.01 \ K\ Figure 7: Flux profiles withs;sp) included.
¢ \ / ]
0.001 \ 3 : :
\f \ E Busch, N. E., 1973: On the mechanics of atmospheric
1 f3 f23 . . .
0.0001 turbulence, inMorkshop on Micrometeorologgdited
by D. A. Haugen, pp. 1-28, American Meteorological
Society.
—0.008 —0.006 —0.004 —0.002 0  0.002 0.004 0.006
Dimensionless fluxes f; Gryning, S.-E. and E. Batchvarova, 1994: Parameteri-
zation of the depth of the entrainment zone above the
Figure 5: Flux profiles with{s; ;) = 0. daytime mixed layerQuart. J. Roy. Meteorol. Sqc.
120, 47-58.
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