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Abstract 

 

Bio-optical retrieval algorithms based on blue-green reflectance ratios suffer 

severely in the coastal waters due to imperfect atmospheric corrections and spectral 

interferences from organic and inorganic components in the water, which furthermore, 

don’t necessarily correlate with chlorophyll in the coastal waters.  Standard near-infrared 

(NIR) atmospheric correction algorithms often fails in the coastal waters because of 

higher turbidities which result in increased elastic reflectance and significant radiance 

contributions in NIR bands.  Recently, an atmospheric correction algorithm using the 

short-wave infrared (SWIR) bands has been applied to turbid coastal waters.  In this 

study we examine the performance of our recently proposed bloom detection technique 

called red band difference (RBD) and toxic dinoflagellate Karenia brevis (K. brevis) 

bloom classification technique called K. brevis bloom index (KBBI) for use with 

Moderate Resolution Imaging Spectroradiometer (MODIS) data, corrected for the 

atmosphere, using NIR and SWIR atmospheric correction algorithms.  Our analysis 

shows that both atmospheric correction algorithms are unsatisfactory, giving negative 

normalized water-leaving signals at the 412nm band for the bloomed area, which is an 

indication of a failure of atmospheric correction.  Standard reflectance band ratio 

algorithms applied to this inappropriately atmospherically corrected signal give different 

and inaccurate results with either atmospheric correction algorithm.  However, the RBD 

values retrieved from either atmospherically corrected data give nearly the same results 

( 99.02 =r ) for the bloomed region while the KBBI values retrieved from either 

atmospherically corrected data seems to be less correlated ( 64.02 =r ).  
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1. Introduction 

The fundamental measurement in ocean color remote sensing is the water-leaving 

radiance or the upwelling spectral distribution of the radiance from the ocean.  

Geophysical parameters such as chlorophyll concentrations can be retrieved from this 

water-leaving signal since it contains information about the water columns.  Only about 

10% of the total signal measured by the ocean color sensors contains information about 

the waters and the rest represents scattering from aerosols and air molecules.  The goal of 

the atmospheric corrections over the ocean is to remove contributions from atmosphere 

and reflection from the sea surface.   

 

 Gordon and Wang (1994) developed an atmospheric correction scheme for the 

Open Ocean where the aerosol contribution was estimated using TOA 

radiance/reflectance signals obtained from near infrared (NIR) bands (for MODIS 748-

869nm).  This approach assumes that ocean is optically black in the NIR bands due to the 

strong water absorption in this region of the spectrum.  Although this technique works 

well in the Open Ocean, it breaks down in optically complex coastal waters, since black 

pixel approximation no longer holds true due to strong reflections from organic and 

inorganic particulate matters.  If water-leaving radiance is not negligible in the NIR bands 

then the retrieved aerosol loading will be overestimated, resulting in underestimated 

water-leaving radiances.      

 

To avoid this problem, another atmospheric correction approach for coastal water 

was proposed by Wang and Shi (2005) which uses different short wave infrared (SWIR) 
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bands (i.e., MODIS 1240nm and 2130nm).  This approach is based on the fact that ocean 

water absorbs strongly in this spectral region, and the contributions of the in-water 

constituents are negligible and can safely be considered dark.  However, at these long 

wavelengths the atmospheric reflectance itself is significantly weaker and spectral 

features, due to absorbing aerosols or fine urban modes, are particularly difficult to 

resolve.   

 

Retrieved ocean products in the coastal waters are often inaccurate due to 

inappropriate atmospheric correction on top of many other contaminations such as 

CDOM and inorganic particulate matters.  Although atmospheric correction algorithms 

are improving, it still remains a challenge to correct for the atmosphere particularly over 

the turbid waters.  So, it is important to develop techniques that are less sensitive to the 

atmospheric correction algorithms.  The main objective of this paper is to analyze 

impacts of atmospheric correction algorithms on our recently proposed bloom detection 

technique called red band difference (RBD) and Karenia brevis (K. brevis) bloom 

classification technique called K. brevis bloom index (KBBI).  

 

2. Backgrounds 

a. Atmospheric corrections 

The signal received at the TOA by an ocean color satellite sensor can be 

expressed as Siegel et al., (2000) 
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where )(λrL , )(λAL , )(λwcL , )(λgL , and )(λwL are the contributions due to molecular 

scattering (Rayleigh), aerosol and Rayleigh-aerosol scattering, whitecaps, sun glint, and 

ocean water, respectively.  Here )(λuT  and )(λut  are the direct and diffuse upwelling 

transmittances of the atmosphere.  The radiance, L , can be converted to reflectance, ρ , 

using the relation 
)cos( 00 θ

πρ
F

L= , where 0F is the extraterrestrial solar irradiance, and  

0θ  is the solar zenith angle.  

 

 The reflectance contributed by whitecaps is estimated from the surface wind and 

subtracted from measured reflectance/radiance.  The surface atmospheric pressure and 

wind speed are used to compute the Rayleigh scattering which is then subtracted from the 

whitecap corrected reflectance/radiance.  The algorithm then selects from a family of 

aerosol models using signals from NIR or SWIR bands and estimates the aerosol 

contribution in each of the visible wavelength bands.  After subtraction of the aerosol 

contribution, the water-leaving reflectance/radiance is obtained in each of the visible 

bands by dividing by the diffuse atmospheric transmittance.   

 

b. Detection algorithm 

The bloom detection algorithm or the RBD technique was introduced in Amin et 

al., (2008a, 2008b) and can be expressed as follows: 

)667()678( nLwnLwRBD −=  (2) 
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Where the )(λnLw  is the normalized water-leaving radiance which is defined as 

the upwelling radiance just above the sea surface, in the absence of an atmosphere, and 

with sun directly overhead.  The RBD technique was achieved based on the principle that 

organisms such as K. brevis absorbs strongly around 675nm which causes )(λnLw  to 

have a trough around this band.  But because of the contribution of chlorophyll 

fluorescence emission centered at 685nm and the known lower backscattering efficiency 

of K. brevis, this trough is shifted toward shorter wavelengths around 667nm or below 

depending on the concentrations of chlorophyll and the quantum yield of chlorophyll 

fluorescence.  The signal at 678nm band, which falls in the shoulder of the red-NIR 

water-leaving radiance peak, has higher values than the signal at 667nm band due to the 

chlorophyll fluorescence contribution on top of reflectance due to the total inverse 

absorption (phytoplankton and sea water) spectra.  Simulation shows that the positive 

RBD values (> 3/1 mmg of Chlorophyll) are primarily due to the fluorescence signal 

which correlates strongly with the chlorophyll concentration of the K. brevis bloom 

conditions and open water conditions.  Because of the strong correlation between RBD 

and K. brevis chlorophyll concentration found in simulation, it may be possible to 

quantify K. brevis blooms in terms of the chlorophyll concentrations more accurately 

than the standard band ratio algorithm by developing some empirical relationship 

between the RBD and K. brevis bloom chlorophyll using in situ data.  However, the RBD 

technique may also detect blooms of other species as well particularly when high 

concentrations chlorophyll is present in the bloom.  To distinguish between K. brevis and 

other blooms, we developed a K. brevis classification technique to discriminate K. brevis 
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blooms from other blooms and bloom like features such as CDOM plumes, sediment 

plumes and bottom reflectance.    

 

c. Classification algorithm 

This classification technique was introduced in Amin et al., (2008a, 2008b) and 

can be expressed as follows:      

)667()678(

)667()678(

nLwnLw

nLwnLw
KBBI

+

−
=   (3) 

The KBBI technique was developed based on the total particulate backscattering 

associated with K. brevis and non-K. brevis blooms.  K. brevis bloom water is known to 

have lower total particulate backscattering than the non-K. brevis bloom waters.  So the 

water-leaving radiance signal is much lower for K. brevis bloom than the non-K. brevis 

bloom waters since radiance signal is proportional to the backscattering.  As a 

consequence, the sum of the two red bands of MODIS (band 13 and band 14) has much 

higher values for non-K. brevis blooms than the K. brevis bloom.  At the same time, the 

differences between the two red bands or the RBD for non-K. brevis blooms is usually 

lower (and even negative for low chlorophyll) than the difference for K. brevis bloom 

with the same chlorophyll concentration.  Therefore, when the smaller (negative for low 

chlorophyll) difference of non-K. brevis bloom is divided by a larger sum, the KBBI 

value becomes very small (negative for low chlorophyll) while for K. brevis bloom it 

magnifies because the numerator and denominator are larger and smaller respectively 

compared to the non-K. brevis bloom with the same chlorophyll concentrations.     
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3. Results 

a. Impacts of atmospheric correction on RBD 

Fig. 1a shows two normalized water leaving radiance spectra averaged over 3 by 

3 pixels taken from the same bloomed region but atmospherically corrected using 

standard NIR and SWIR algorithms.  The negative signal at 412nm band shown with an 

orange circle in Fig. 1a is an indication of the atmospheric correction failure meaning that 

the signal is over corrected for the atmosphere which is often the case in bloomed and 

coastal waters.  Although SWIR seems to do little bit better than NIR in the bloomed 

region (Fig 1a), they both give negative signal at blue band, an indication of the 

limitations of both algorithms.  We also confirm that the errors in the atmospheric 

correction scheme are clearly strongest for shorter wavelengths. Clearly, blue-green band 

ratio algorithms applied to the inappropriately corrected for atmosphere signal can result 

in inaccurate and different results with different atmospheric correction algorithms.  The 

spike at the 678nm band, shown with a red circle in Fig. 1a is caused by chlorophyll 

fluorescence and the RBD technique takes advantage of this fluorescence signal. 

 

Fig. 1b demonstrates the sensitivity of the RBD technique on NIR and SWIR 

atmospheric correction algorithms.  The data for Fig 1b are taken from MODIS Aqua 

sensor image containing data from the region between (25.9ºN - 25.5ºN) and (81.9ºW - 

82.3ºW) for 13 Nov 2004 when a K. brevis bloom was documented by Hu et al., (2005).  

This region includes K. brevis bloomed areas as well as neighboring pixels which may or 

may not contain K. brevis cells.  However, in our previous study (Amin et al., (2008b)) 

we concluded that these neighboring pixels may have K. brevis cells but in low 
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concentrations since the satellite data followed the same trend as the simulated data.   Our 

analysis shows that the RBD values are nearly the same with either atmospheric 

correction algorithm (Fig 1b) for the bloomed regions.  This is due to the fact that we are 

calculating difference between the two bands which doesn’t change if the spectrum is 

shifted up or down by different atmospheric correction schemes as oppose to the ratios 

which changes significantly even with a small shift in the spectrum.  

 

a. Impacts of atmospheric correction on KBBI 

Sensitivity of the K. brevis classification technique on NIR and SWIR 

atmospheric correction is demonstrated Fig. 2.  The data is taken from the same region as 

the RBD data in Fig 1b.  The correlation between NIR and SWIR KBBI data is somewhat 

reduced mainly because of the normalization while the RBD which retains its strong 

correlations.  Although the numerator (same as the RBD) remains nearly the same, the 

sum of the two red bands (denominator of the KBBI) changes when the spectrum is 

shifted up or down with different atmospheric correction algorithms.  Because of the 

changes in the denominator of Eq.3 with the atmospheric corrections the KBBI values 

changes somewhat, but still give reasonable enough correlations ( 64.02 =r ) compared to 

traditional band ratio algorithms, such as standard chlorophyll retrieval.  

 

4. Discussions 

Our analysis shows that both atmospheric correction algorithms are unsatisfactory 

over the bloomed region, giving negative normalized water-leaving signals at blue-green 

bands.  These negative )(λnLw  values are primarily due to the fact that waters containing 
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large accumulations of K. brevis species have a relatively strong water-leaving radiance 

in the near-infrared bands, while at the same time are absorbing strongly in the blue-

green region, which leads to possible errors in the atmospheric correction and 

underestimation of )(λnLw  in the blue and green bands of MODIS.  Reflectance band 

ratio algorithms applied to this inappropriately atmospherically corrected signal gives 

different and inaccurate results with either atmospheric correction algorithm.   Results for 

the RBD bloom detection technique are found to be similar with either atmospheric 

correction algorithm. This is due to the fact that for this technique we are using the 

difference in magnitude of the water-leaving radiance signal at two adjacent red bands, 

and since these two bands are relatively close spectrally, 667nm and 678nm, the 

magnitude of the optical impact of the atmosphere will be very nearly the same on either 

band, and also when we calculate the difference of the two bands it remains nearly the 

same regardless of the shift the whole spectrum.  This is in marked contrast to the impact 

of the atmosphere on the ratio of signal magnitudes at these bands.  In our previous study 

Amin et al., (2008b), simulations for K. brevis, which is known to be characterized by 

weak backscatter, both because its own backscatter is low due to its low index of 

refraction, and also due to the typically low cohort submicron particulate concentrations 

typically associated with it, show that the K. brevis chlorophyll concentration strongly 

correlates with the RBD values for high chlorophyll (> 3/1 mmg ).  It should be possible to 

evolve empirically based relationships between RBD and K. brevis chlorophyll 

concentrations using in situ data.  The nearly insensitivity of the RBD technique to 

atmospheric corrections in addition to the less sensitivity to CDOM Amin et al., (2008b) 

may enable us to retrieve chlorophyll more accurately than the blue-green reflectance 
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ratio algorithms for low backscattering blooms such as K. brevis that blooms regularly in 

the Gulf of Mexico particularly in the West Florida Shelf.   

 

The KBBI technique is somewhat sensitive to the atmospheric corrections.  

However, it is still possible using either atmospheric correction scheme to identify K. 

brevis bloomed areas.  While in general, the KBBI technique could identify potential K. 

brevis bloomed area using data corrected with either atmospheric correction, the SWIR 

algorithm does more poorly in the offshore pixels and often gives noise values of KBBI 

(positive and negative false bloom alarm in nearby pixels).  This is because the MODIS 

SWIR bands are designed for the land and have substantially lower signal-to-noise ratio 

(SNR) values.  So the signals received in the SWIR bands in offshore pixels are low, and 

often within the noise level.  Thus the overall performance of NIR algorithm is found to 

be better for use with KBBI than the SWIR algorithm, with the exception that NIR gives 

more false positive bloom alarms at the cloud edge pixels and spurious results for the 

stripe regions at the ends scan lines.  Probably a combined NIR-SWIR atmospheric 

correction approach would be the best approach for the KBBI technique although it still 

needs to be verified.    

 

5. Conclusion 

Our results show that both NIR and SWIR atmospheric correction approach fail in 

the bloomed regions which can lead to poor retrieval results particularly when band ratio 

algorithms are used to retrieve geophysical parameters such as chlorophyll which is often 

used to quantify blooms.  We have shown that our bloom detection technique performs 
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equally well with MODIS standard NIR and SWIR algorithms unlike the traditional band 

ratio algorithms such as standard chlorophyll retrievals.  Our classification technique also 

performs reasonably well with the either atmospheric correction scheme for the bloomed 

regions.   
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List of Figures 

FIG. 1. (a) Normalized-water leaving radiance spectra of K. brevis bloom taken from the 

same bloomed region but atmospherically corrected using NIR and SWIR atmospheric 

correction Algorithms.  Both algorithms fail in the bloomed region although SWIR seems 

to give smaller negative values in blue bands.  (b) RBD data corrected with NIR and 

SWIR atmospheric correction and they are nearly the same. 

 

FIG. 2. 13 Nov 2004 MODIS RBD images: (a) Data corrected for atmosphere using 

standard NIR atmospheric correction algorithm and (b) Data corrected for atmosphere 

using SWIR atmospheric correction algorithm.  Both atmospheric corrections give nearly 

the same values of RBD. The white regions are clouds and lands while the warm regions 

are the bloomed areas.  The bright pixels next to the white regions are contamination 

from the cloud at the cloud edge pixels.   

 

FIG. 3. The KBBI data corrected with NIR and SWIR atmospheric correction algorithms. 
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FIG. 2. 13 Nov 2004 MODIS RBD images: (a) Data corrected for atmosphere using 

standard NIR atmospheric correction algorithm and (b) Data corrected for atmosphere 

using SWIR atmospheric correction algorithm.  Both atmospheric corrections give nearly 

the same values of RBD. The white regions are clouds and lands while the warm regions 

are the bloomed areas.  The bright pixels next to the white regions are contamination 

from the cloud at the cloud edge pixels.   
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FIG. 3. The KBBI data corrected with NIR and SWIR atmospheric correction algorithms. 

 


