

IBM T. J. Watson Research Center

# Estimating high-resolution near-surface forecast uncertainty to support optimization of resources

Elena Novakovskaia, Ulisses Mello, Lloyd Treinish January 2009

© 2009 IBM Corporation



## Outline

- Overview and motivation
- Approach
- Example results
- Conclusions and future work



## Decision Support System for Operational Resource Management



\*Major Subway Flooding Incidents on September 8, 2004. "August 8, 2007: Storm Report." Metropolitan Transportation Authority, 9/20/2007, page 21.

- Adequate response to urban flood can be provided based on forecast with 48/72 hour lead time
- At this timescale uncertainties become very important for DSS system
- An assessment of rainfall uncertainties (QPF) and the knowledge about result reliability are needed
- Application: flash floods in New York City
- Preliminary assessment uses soil moisture as the land surface variable subject to initialization errors



Hillside Ave Flooding. Same source, page 23.







#### Urban Hydrology



- Spatial and temporal uncertainties in rainfall patterns propagate further and contribute to overall uncertainties of flash flood forecasts
- There are also additional sources of uncertainties within Urban Hydrology model (model parameters, flood routing, etc.)
- Probabilistic hydrological simulations at urban scale become inputs to the decision support system

|   | _ |   |
|---|---|---|
|   |   |   |
| - |   |   |
| _ |   |   |
| _ |   | w |

## Observations

- **Real-time AWS/WeatherBug data** at 5 minute intervals
- **Observations from** more than 400 surface stations in tri-state area:
  - Rainfall
  - Temperature
  - Relative humidity
  - Surface winds
- WRF/Noah land surface model:
  - Soil moisture
  - Vegetation type and fraction
  - Albedo, skin temperature etc.



- Spatial distribution of soil moisture is estimated from observed accumulated rainfall
- Comparison with the WRF inputs from default databases provides information on the distribution of errors
- PDF of errors for a particular initialization time is used to compute weighted average of ensemble members





## Mixed Gaussian Model for Ensemble Generation

 Alternative scenario to stochastic perturbations sampling for each ensemble member is to cover variability space with a limited size of ensemble:



**Soil Moisture Initialization Error** 



## Heavy Rain and Severe Weather event on July 24, 2008

- National Weather Service, Upton, NY 12:05 AM EDT, WED. JUL. 23, 2008
  - Potential for heavy rainfall
  - Scattered convection through this evening could produce brief downpours with localized urban/poor drainage flooding mainly north and west of New York City
  - Full summer greenup will allow to absorb at least an inch or two without encountering significant widespread
  - QPF amounts of between two and three inches in a 30 hour period from Wednesday afternoon through Thursday
  - Likely result in at least moderate flooding problems for poor drainage in urban areas
  - Very hard to time individual convective elements
  - National Weather Service, Upton, NY 2:31 AM EDT, THU. JUL. 24, 2008
    - Several inches of rainfall is expected overnight with widespread flash flooding





## Simulation Model Domain

- WRF/ARW with 3D-Var data assimilation (v.2.2)
- Domain:
  - Nested grid: 18/6/2 km (76x76x42)
  - Centered at 41°N, 74°W
  - 42 vertical levels
- Microphysics: WSM 5-class scheme
- Cumulus parameterization: Grell-Devenyi Ensemble
- Radiation: Longwave RRTM, Shortwave Goddard
- Boundary layer: YSU scheme
- Noah LSM and land surface characteristics from WRF data sets
- Initial and Boundary conditions:
  - NAM (12 km)
  - SST RTG (0.5 deg)
- Surface observations: AWS/WeatherBug data







## **Ensemble Results and Uncertainty Estimates**

- Spatial distribution of accumulated precipitation (in inches) by July 24, 2008, 12Z (60 hours) is shown for two ensemble members: *H*(-20%,10%) and *H*(+20%,10%). Size of ensemble 8 members.
- Rainfall accumulation in urban areas at Brooklyn<sup>1</sup>, Queens<sup>2</sup>, La Guardia airport<sup>3</sup>, Iower Manhattan<sup>4</sup>, for example, are different.
- Ensemble Average accumulated precipitation agrees with observations at the sites where rainfall exceeded 1".
- Forecast uncertainty is estimated based on ensemble variance.
- Forecast and uncertainty estimates are used in Decision Support System for risk analysis.





**Ensemble Average** 



#### Fraction of Forecast Error Linked to Uncertainties in Soil Moisture





### Temporal Evolution of Rainfall Uncertainties: Accumulated Precipitation

- Time of the event is between July 23, 2008, 20:00 UTC and July 24, 2008, 4:00 UTC (44 – 52 hrs)
- Overlay of accumulated rainfall forecast (60 hrs) and uncertainty estimates for run initialized at 07/22, 00Z shows geographical location of the sites with with high uncertainty in the magnitude of the accumulated rainfall
- Larger intensity uncertainties in an earlier hour are related to temporal uncertainties (different rainfall onset time)
- Sites marked with yellow arrows have higher forecast uncertainty at earlier hour





### Temporal Evolution of Forecast Uncertainties: Surface Winds and Temperature





 Surface Temperature for run initialized on July 22, 00 UTC



- Sites can be virtually divided into clusters with some common underlying feature related to the source of uncertainties
- Time of maximum wind uncertainties is different at different clusters
- For temperature uncertainties, a cluster of sites in Northern Westchester County have larger uncertainty at the earlier time prior to the rainfall event



#### Temporal Evolution of Forecast Uncertainties: Comparison between two operational runs



- When it becomes available, ensemble from a later run initialized at 07/23, 00Z, is compared with the original ensemble
- Sites within the yellow circle have higher forecast uncertainty at earlier hour for run 07/23, 00Z, while final rainfall accumulation in the circled area is about the same for both runs



### Conclusions

- •72 hour high resolution ensemble forecasting is desirable for providing guidance on oncoming flooding events for local businesses
- Generating ensemble perturbations using mixed Gaussian model with adjusted weighting of ensemble members can provide sufficient coverage of the variability space for a relatively limited number of ensemble members
- Forecast error at about 90% of sites can be related to soil moisture initialization uncertainties
- Analysis of temporal evolution of ensemble variance gives an estimate to temporal uncertainties in rainfall onset time
- Uncertainties are smaller for temperature and the largest for accumulated rainfall



#### **Future Work**

- Spatial covariance of uncertainties for a larger set of land surface characteristics
- Examination of other variability sampling techniques and comparison with the mixed Gaussian model approach
- Operational implementation of model output calibration based on weighted ensemble averaging