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1. INTRODUCTION

The traditional methodology employed within any 
nowcasting system usually involves an extrapo-
lation scheme. The variations between different 
techniques come from different methodologies of 
computing a motion vector field, different advection 
schemes, and/or different methods of representing 
storms (i.e., object-based or a gridded field). The 
Oceanic Convection Diagnosis and Nowcasting 
system (Kessinger et al., 2008, 2009) has been de-
signed to detect and predict the locations of deep 
convection within remote, oceanic regions and to 
do this at higher spatial and temporal scales than is 
currently available from the Aviation Weather Cen-
ter (http://aviationweather.gov). Pilots, dispatchers 
and air traffic managers are the users for whom 
these products are designed. 

The Oceanic Convection Diagnosis and Nowcast-
ing system has two parts: the Convective Diagno-
sis Oceanic (CDO) and the Convective Nowcasting 
Oceanic (CNO) products. Real-time, experimental 
results can be seen at http://www.rap.ucar.edu/
projects/ocn under the “Operations” menu.  The 
CDO detects convection through a data fusion 
scheme that has three satellite-based algorithms 
as input and produces an interest field as output 
whose values range from 0-4 during the day and 

0-3 during the night. See Kessinger et al. (2008, 
2009) for additional details. Currently, to make 1- 
and 2-hr nowcasts of convection location, the CNO 
utilizes an object-tracker called the Thunderstorm 
Identification, Tracking, Analysis and Nowcasting 
(TITAN) (Dixon and Weiner, 1993) as its extrapo-
lation scheme with the CDO as input. The CNO 
output is a polygon that represents the future loca-
tion of the storm. Storm growth/decay is indicated 
by trending of previous storm history of the storm 
size. The advantage of the CNO technique is its 
computational efficiency, particularly over large do-
mains as are used in the oceanic regions, and its 
ability to capture storm growth/decay. However, the 
polygons used to represent storm position may not 
produce realistic looking storms and also tend to 
over-forecast the amount of storm area. 

To address these limitations associated with the 
CNO polygon forecast, another nowcasting tech-
nique called CNO-Gridded (CNO-G) has been de-
veloped at NCAR. The CNO-G technique creates a 
gridded forecast of CDO interest values by using a 
motion vector field derived from combining TITAN 
motion vectors with the Global Forecasting Sys-
tem (GFS) numerical model steering level winds. 
In this technique, overall storm structure is retained 
but the growth/decay information associated with 
storm shapes is lost in the process.  A  very similar 
technique has been used for nowcasting satellite 
brightness temperature three hours into the future 
for GOES-R Algorithm Working Group’s hydrology 
team (Cai et al., 2008). The CNO-G forecast was 
not computed in real-time due to the heavy compu-
tational load.
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Fig.1. Flow chart for training the random forest and for classifying using the trained forest.

The third nowcasting technique, which is the pri-
mary focus of this paper, utilizes a data fusion tech-
nique called Random Forest to incorporate other 
data sources (e.g., NWP models, sea surface tem-
perature, satellite soundings, and quikSCAT surface 
winds, etc) in addition to extrapolating the existing 
CDO interest field. The idea is that by incorporat-
ing information that characterizes the storm envi-
ronment, something a simple extrapolation scheme 
can never do, storm growth/decay or even storm 
initiation could possibly be captured.

As a data fusion technique, Random Forest has 
been widely used in various scientific fields, includ-
ing the development of the Federal Aviation Admin-
istration’s (FAA) Consolidated Storm Prediction for 
Aviation (CoSPA) (Williams et al., 2008). In machine 
learning, a Random Forest utilizes many decision 
trees to ascertain the appropriate classification by 
taking the mode of the class as voted by each in-
dividual tree.  (Breiman, 2001; Ho, 2002). The fol-
lowing sections will describe the procedures of run-
ning Random Forest and present some preliminary 
results of nowcasting oceanic convection using the 
Random Forest classification and compare them 
with the CNO and CNO-gridded forecast.

2. METHODOLOGY

The detailed methodology of creating CNO and 
CNO-G nowcasts of oceanic convection can be 
found elsewhere (Kessinger et al., 2008, 2009 and 
Cai et al., 2008). This section will focus on details 
of the Random Forest technique as applied to the 

CNO (hereafter referred to the CNO-RF).

A set of predictors derived from geostationary and 
polar-orbiting satellites and the GFS numerical 
model are used as input variables to the CNO-RF. 
The output variable (i.e., the forecast), which rep-
resents oceanic convection, contains values of the 
CDO interest field (Kessinger et al., 2008, 2009). 
The goal of nowcasting oceanic convection is thus 
converted to forecasting CDO intensity, which rang-
es in values between 0 and 4 during the day and 0 
to 3 during the night, by using a set of predictors 
derived from satellite observations and GFS model 
fields.

The flow chart of training and subsequent classifi-
cation using the trained forest is shown in Fig.1. As 
a first attempt of exploring the Random Forest tech-
nique in oceanic weather, eight days of data (12-18 
August 2007 from Hurricane Dean over the Gulf of 
Mexico domain) are used to train a forest of 200 
decision trees, while data from another four days 
(19-22 August 2007, also from Hurricane Dean) are 
used for independent classification and verification. 
An initial set of 17 predictors, which includes vari-
ous satellite and GFS model-derived fields over the 
Gulf of Mexico domain, is employed in the Random 
Forest training/classification. All the satellite-based 
input predictors are advected 1-2 hr into the future 
using motion vectors derived by blending TITAN 
vectors with GFS steering level winds. Both the in-
put predictor fields and the validation CDO interest 
field are converted from Meteorological Data Vol-
ume (MDV), an internal NCAR format to the Attri-
bute-Relation File Format (ARFF) format, a format 
the Random Forest software can read. The ARFF 



 
Fig. 2.  An example showing the number of votes the random forest produced for various CDO interest val-
ues at 1245 UTC on August 19, 2007 over the Gulf of Mexico domain for a) CDO interest = 0 and b) CDO 
interest = 1. Figure continued on next page.



Fig. 2, con’t. An example showing the number of votes the random forest produced for various CDO 
interest values at 1245 UTC on August 19, 2007 over the Gulf of Mexico domain for c) CDO interest =2 
and d) CDO interest = 3. Figure continued next page.



 Fig.2, con’t. An example showing the number of votes the random forest produced for various CDO inter-
est values at 1245 UTC on August 19, 2007 over the Gulf of Mexico domain for e) CDO interest = 4.

files are then thinned and used for training a forest 
with 200 decision trees. To achieve reasonable ac-
curacy, at least 100 decision trees are needed. The 
trained forest is used for independent classification/
verification for the following four other days.

The Random Forest produces votes of each CDO 
interest category (i.e., CDO interest value equals 
0, 1, 2, 3 or 4) for each set of input predictors at 
forecast time. When it was found that the classifica-
tion process, which creates the CNO-RF forecast, 
could take ~1 hr to run, we decided to thin the ARFF 
input file by using cloud top height as a threshold. 
Only regions with cloud top height over 10,000 ft 
are classified. By reducing the number of input grid 
points, the classification process takes ~20 min to 
run. Certainly the reduction in computing time de-
pends on the weather condition inside the domain.

One example of the votes for CDO interest equals 
0, 1, 2, 3 and 4 for one hour forecasts is shown 
in Fig. 2. Hurricane Dean can be seen clearly in 
the middle of the domain. As you would expect, the 
majority of the domain with no convection has most 

decision trees voting CDO = 0 (see Fig.2a); at the 
same time, very few decision trees vote yes in the 
convection-free region for CDO values greater than 
zero. The strong convection associated with Hur-
ricane Dean has the majority of trees voting CDO 
interest = 3 (see Fig. 2d). 

An example of a 1 hr CNO-RF nowcast and its 
corresponding verification is shown in Fig. 3. It is 
interesting to notice that a CDO interest forecast 
purely derived through decision tree votes looks 
very similar to the CDO validation field, considering 
totally different techniques are used in calculating 
them. The CNO-RF forecast was able to capture 
Hurricane Dean as well as other relatively weak 
convection over the Gulf of Mexico. It should be 
pointed out that the CNO-RF forecast seemed un-
able to forecast CDO = 4 very well, therefore, some 
calibration might be needed for better verification 
results.

In addition to producing a deterministic forecast by 
choosing the mode of the Random Forest classi-
fication, probabilistic forecast of CDO interest can 



Fig.3. An example of random forest created CDO 1 hr forecast (CDO-RF) and its corresponding verifi-
cation at 1245 UTC on August 19, 2007 over the Gulf of Mexico domain. a) 1 hr CDO-RF,  and b) CDO 
verification.

 



Fig.4.  Bar chart showing the imporance ranking of selective predictors for 1 hr, 200 tree Random 
Forest forecast.

also be created using the votes information of each 
decision trees. This is an area of active ongoing re-
search and results will be presented in future pa-
pers.

3. RESULTS

3.1. Predictor importance

One unique aspect of Random Forest technique is 
its capability of ranking the importance of various 
predictors. The relative ranking of various predic-
tors have several implications. First, it reveals which 
predictor is contributing most to a correct forecast; 
thus, in the future training of a new forest, only the 
important predictors should be included if compu-
tational efficiency is an issue. Secondly, if a fuzzy 

logic forecast system is to be designed based on a 
set of predictors, the weights of each predictor can 
be decided by proper usage of Random Forest im-
portance ranking. The latter application of Random 
Forest has profound impact on the designing/tun-
ing of fuzzy-logic-based forecasting system, since 
it changes the subjective way of assigning weights 
for different predictors into an objective, systematic 
way.

The importance ranking of predictors for a 1hr, 
200 tree Random Forest forecasting is shown in 
Fig. 4. As we would expected, the extrapolation of 
satellite-based observational fields such as cloud 
top height, original satellite channels, Global Con-
vective Diagnosis (GCD; Mosher, 2002), and cloud 
types rank at the top of importance, followed by GFS 
model-derived environmental fields (i.e., CAPE, 
CIN, averaged relative humidity). Predictors related 



Fig.5. Comparison of 1 hr CDO interest forecasts by a) CNO-RF, and b) TITAN-based CNO technique. 
The forecasts are valid at 1315 UTC on 19 August 2007 over the Gulf of Mexico domain. The red lines 
represent the verification of CDO interest =2.5.



Fig.6. Comparison of 1 hr CDO interest forecasts by a) CNO-RF, and b) CNO-G technique. The forecasts 
are valid at 1315 UTC on 19 August 2007 over the Gulf of Mexico domain. The red lines represent the 
verification of CDO interest =2.5.

 



to new storm initiation did not show up near the top 
of the importance ranking probably as a result of 
the dominance of existing convection in the training 
dataset. Efforts are under way to separate exist-
ing storms from new storms such that a Random 
Forest can be trained to only detect new storms, 
rather than a combination of existing storms and 
new storms. In the Random Forest results shown 
here, existing storms seem to dominate the results, 
particularly within the importance ranking (Fig. 4). 

3.2 Statistical Evaluations

One hour CNO-RF nowcasts for August 19-22, 
2007 are produced and compared with correspond-
ing CNO and CNO-G forecasts. An example of the 
CNO-RF nowcast is compared to a TITAN-based 
CNO nowcast valid at the same time in Fig. 5. The 
same CNO-RF nowcast is also compared with 
CNO-G forecast in Fig. 6. As we can see from Fig. 5, 
the CNO-RF technique did rather well on Hurricane 
Dean by producing a realistic looking hurricane with 
rainbands stretching out from the storm, while the 
CNO 1 hr forecast in Fig. 5b represents the hur-
ricane by a polygon shape, which certainly caused 
some over-forecasting problems. Subtle differences 
between the two techniques also exist for storm A, 
B, C and D in Fig. 5. The CNO-RF did slightly better 
for storm A, C and D in terms of their growth/decay 
trends, but it totally missed forecasting storm B, if 
a CDO interest threshold of 2.5 is imposed (notice 
there is no orange color associated with storm B in 
Fig. 5a). As for the relative performance between 
CNO-RF and CNO-G, visual inspections of Fig. 6 
could not tell any significant differences. Subjective 
evaluation of many 1 hr forecasts similar to Figs. 5 
and 6 suggests that the skills of all three techniques 
are comparable for 1 hr forecasts, with the CNO-RF 
and CNO-G techniques showing the advantage of 
more realistic looking storms.

Standard verification scores based on CDO inter-
est threshold of 2.5 for CNO, CNO-G and CNO-RF 
forecasts between 19-22 August 2007 over the Gulf 
of Mexico domain are shown in Table 1. Consistent 
with the subjective evaluations discussed earlier, all 
techniques have comparable Critical Success Index 
(CSI) performance scores for the 1 hr forecasts. It 
is interesting to notice that the CNO-G technique 
has the lowest bias, while the CNO (CNO-RF) tech-
nique tends to over (under)-forecasting the CDO in-
terest. It is possible that the performance score of 
the CNO-RF technique could be improved by some 
proper calibrating processes. Although the three 

techniques show no significant difference in skills 
for the 1 hr forecast, it is hoped that the advantage 
of the CNO-RF technique could be better exploited 
at longer forecast lead times, owing to its capability 
of handling storm growth/decay through including 
GFS-derived storm environmental variables. Both 
2 hr and 3 hr CNO-RF forecasts are being pursued 
now and results will be presented at the conference 
if they are available.

4. SUMMARY and FUTURE WORK

While this first attempt to use the Random Forest 
machine learning technique to nowcast oceanic 
convection has shown promise, plenty of improve-
ments will be pursued in the near future. First, the 
input predictor list will be expanded to include more 
fields; secondly, the forecast should be extended to 
longer lead times since the Random Forest tech-
nique could potentially show more skill at longer 
lead time; and finally, both the training and classifi-
cation datasets need to be expanded dramatically 
so that statistically meaningful results can be ob-
tained regarding the performance of different tech-
niques.

As refinements to the CNO-G and the CNO-RF 
methodologies are made, comparison of their re-
sults and statistical performance to the existing 
CNO system will be made. If statistical perfor-
mance is improved by the new techniques, the cur-
rent CNO will be upgraded to incorporate them, as 
computational load allows. 
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Techniques POD FAR CSI Bias No. of Fore-
casts

CNO 0.69 0.44 0.45 1.23 114
CNO-G 0.64 0.35 0.48 0.98 114
CNO-RF 0.58 0.24 0.48 0.76 144

Table 1.   Comparisons of standard verification scores for 1 hr CNO, CNO-G and CNO-RF forecasts


