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1.  INTRODUCTION 
 

Missing data presents a problem in many fields, 
including meteorology.  The data can be missing at 
random, in recurring patterns, or in large sections. 
Incomplete datasets can lead to misleading conclusions, 
as demonstrated by Kidson and Trenberth (1988), who 
assessed the impact of missing data on general 
circulation statistics by systematically decreasing the 
amount of available training data.  They determined that 
the ratio of the Root Mean Square Error (RMSE) in the 
monthly mean to the daily standard deviation was two to 
three times higher when the missing data was spaced 
randomly compared to spaced equally, and RMSE 
increased by up to a factor of two when the missing data 
occurred in one block.  Therefore, the spacing of the 
missing data can have an impact on statistical analyses.  

It is useful to consider how to best replace, or 
impute, the missing data.  Various methods have been 
considered, Vincent and Gullet (1999) found that highly 
correlated neighbor stations can be used to interpolate 
missing data in Canadian temperature datasets.  
Schneider (2001) used an expectation maximization 
(EM) algorithm for Gaussian data and determined that it 
is applicable to typical sets of climate data and that it 
leads to more accurate estimates of the missing values 
than a conventional non-iterative imputation technique.  
Richman et al. (2008) showed that iterative imputation 
techniques used to fill in systematically removed data 
from both linear and nonlinear synthetic datasets 
produced lower Mean Square Error (MSE) than other 
methods studied.  Three iterative imputation techniques 
produced similar results, and they all had lower errors 
than using the mean value, case deletion, or simple 
linear regression.  However, Kemp et al. (1983) 
compared seven different methods of replacing missing 
values and found that between-station regression 
yielded the smallest errors (estimated – actual) in an 
analysis of temperature observing networks.  They 
found that linear averaging within station and a four-day 
moving average were not as accurate as between 
station regressions, although linear averaging had 
smaller errors than the four-day moving average.  * 
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A major problem for statistical predictive system 
developers is obtaining enough input data from 
Numerical Weather Prediction (NWP) models for 
developing, or training, new post-processing methods.  
Such post-processing, or calibrating, of NWP forecasts 
has been shown to decrease errors in forecasting since 
the introduction of Model Output Statistics (MOS) 
(Glahn and Lowry 1972).  For these statistical post-
processing techniques to make these improvements in 
forecast skill, however, requires training them on 
archived forecasts and validation data.  Enough data 
must be available for the resulting technique to be 
stable.  Thus, imputing any missing data will provide 
larger training and validation datasets for this process. 

The advent of ensembles of forecasts has led to 
new methods of post-processing.  Post-processing 
ensemble temperature data can produce an even more 
accurate deterministic forecast than the raw model 
forecast, as well as provide information on uncertainty 
(Hamill et al. 2000).  Some statistical calibration 
techniques give performance-based weights to 
ensemble members, thus giving more weight to an 
ensemble member that produces relatively higher skill 
than other ensemble members (Woodcock and Engel 
2005, Raftery et al 2005).  After computing performance 
weights from a set of previous ensemble forecasts, 
these weights are used to combine the current 
ensemble forecasts to form a single deterministic 
forecast.  If some ensemble members are missing, 
however, a method must be devised to deal with the 
situation. Previous studies have simply excluded cases 
with missing ensemble forecast data (Greybush et al. 
2008).  In a real-time forecasting situation, however, 
excluding missing forecast data limits the forecast skill 
of the ensemble and limits the uncertainty information 
available from the ensemble.  Currently, if an ensemble 
member is missing from a forecast, the National 
Weather Service (NWS) simply excludes it from the 
ensemble (Richard Grumm, 2008 personal 
communication), which limits the spread and utility of 
the ensemble. As we move toward more complex 
weighting methods, such an approach may no longer be 
feasible.  Unlike replacing missing observation data, 
replacing missing forecast data must preserve each 
ensemble member’s characteristics in order to portray 
its impact on the consensus forecast accurately, so that 
the computed performance based weight still applies. 

 This current study uses the same data and post-
processing algorithms as Greybush et al. (2008).  That 
study developed and evaluated regime dependent post-
processing ensemble forecasting techniques.  Greybush 
et al. (2008) used the University of Washington  
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Mesoscale Ensemble, a varied-model (differing physics 
and parameterization schemes) multi-analysis ensemble 
with eight members, to analyze several post-processing 
methods of forecasting two-meter temperature. A large 
amount of this data was missing, and Greybush et al. 
(2008) used case deletion in the training and analysis of 
the post-processing methods.  The performance of the 
post-processing methods was tested on a year of data 
for four locations in the Pacific Northwest. 

The first post-processing method used here is a 
performance-weighted average using a 10-day sliding 
window.  The relative performance of each of the eight 
ensemble members in the previous 10-days is used to 
compute forecast weights.  Although this is not directly a 
regime-dependent forecast method, a seven to ten day 
period reflects the typical persistence of atmospheric 
flow regimes in the Pacific Northwest (Greybush et al. 
2008). 

A second post-processing method used here is the 
K-means regime clustering method.  Clustering 
techniques are applicable when the instances are to be 
divided into natural, or mutually exclusive, groups 
(Witten and Frank 2005). The parameter, K, is the 
number of clusters that are sought.  Greybush et al. 
(2008) showed that the K-means regime clustering post-
processing method produced the lowest MAE in two-
meter temperature forecasts when compared to regime 
regression, a genetic algorithm regime method, and 
different windowed performance-weighted averages. 

The goal of the current research is to determine the 
effects of replacing the missing data on these post-
processing methods.  The same dataset and model 
development code are used to isolate the effects of 
replacing the missing data.  We test the data imputation 
methods for four point locations for which we have 
verification observations.  Section 2 describes the 
methods used to replace the missing data.  Section 3 
shows the results of the various methods of replacing 
the missing data on a 10-day performance window post-
processing technique and a K-means regime clustering 
method.  Section 4 summarizes and analyzes the 
results. 

 
2.  METHODS 
 

This study uses data from an eight member 
ensemble of daily 48-hour surface temperature 
forecasts for a year (365 consecutive days).  Four point 
locations from the Pacific Northwest are used: Portland, 
Oregon; Astoria, Oregon, Olympia, Washington; and 
Redmond, Washington.  All of the verification data are 
available.  However, 260 of the 2920 (8.9%) 
temperature forecasts are missing from the eight 
member ensemble.  Out of the 365 days, 151 (or 41.4%) 
have at least one ensemble member missing.  Although 
there are often consecutive days of missing data for an 
ensemble member, the pattern of missing data appears 

to be random.  The cases with missing data are deleted 
in the original research (Greybush et al. 2008).  More 
sophisticated methods are tested here. 

The missing data are replaced before performing 
simple linear bias-correction.  The full process of 
missing data imputation, bias-correction, and regime-
based performance weighted averaging is shown as a 
data flowchart in Figure 1.   
 

 
Figure 1.  Flowchart of the process of imputing the 
missing data and the effects on the MAE of statistical 
post-processing techniques. 
 

After bias-correcting the individual ensemble 
members with simple linear regression, weights are 
assigned to the ensemble members.  The 10-day 
performance-weighted window and K-means regime 
clustering both calculate separate performance weights 
for the ensemble members.  The deterministic forecast 
is a combination of the weighted ensemble members 
and is compared to the verifying observations to 
produce a consensus forecast MAE for each day.  For a 
fair assessment of the methods, independent 
verification data is necessary; therefore, the data is 
randomly divided into a dependent (training) dataset 
(2/3 of the days) and an independent (verification) 
dataset (1/3 of the days).  The performance weights are 
calculated on the training dataset and applied to the 
independent dataset to produce the mean MAE of the 
forecasts from the independent dataset.  This process is 
repeated 50 times and averaged to avoid overfitting and 
biasing the results via sampling error.  

 Finally, the performance of two weighted average 
post-processing is evaluated to quantify the benefit of 
missing data imputation.  The post-processing 
techniques calculate averaging weights for each 
ensemble member based upon that ensemble 
member’s forecasting performance in a 10-day window 
or under a specific weather regime.  Therefore, the data 
used to replace the missing ensemble member’s 

 
 



temperature forecasts must mimic the statistical 
characteristics of that member in order to maintain the 
validity of the performance weights.   

   
2.1 Case-Deletion 

 
The first way to address the issue of missing data is 

to exclude it from the dataset.  This method deletes the 
ensemble member that is missing.  Therefore, if two 
ensemble members are missing for a given day, the 
performance weights are computed on the remaining 
ensemble members.  In training the 10-day 
performance-weighted window, if an ensemble member 
forecast is missing at any time in the previous 10-days, 
that day is excluded and the performance weight for that 
member is computed on the remaining nine days.  Note 
that this procedure reduces the amount of data available 
for training and the number of members used in the 
consensus forecast.  This is the method used 
operationally and when training new statistical post-
processing methods by the National Weather Service 
(Richard Grumm 2008, personal communication; Dr. 
Harry Glahn 2008, personal communication).  Thus 
case deletion will be our baseline method for 
comparison. Note that if the training dataset is 
sufficiently large enough, post-processing methods can 
be trained with case deletion.  However, this method is 
difficult to adapt to any missing ensemble data in a real-
time forecast situation. All other methods of imputing 
missing data are compared to the baseline results 
provided by case deletion. 

 
2.2 Mean substitution 

 
One of the simplest techniques for missing data 

imputation is replacing missing values by the annual 
mean.  Although this method does not take into account 
the seasonality of temperatures, we test it here because 
it is computationally fast.   
 
2.3 Persistence 
 

When a weather pattern persists, the temperature 
at a location is often similar to that of the previous day.  
Therefore, the first comparison method of predicting the 
missing data is persistence, which uses the previous 
day’s temperature forecast.  Consecutive days of 
missing data are treated by using the value of the last 
previous day with an available temperature forecast.  
Our data includes several periods of consecutive 
missing data, which limits the effectiveness of 
persistence, because the most recent available data is 
assigned to all consecutive missing days.  Persistence 
is a computationally efficient method of replacing the 
missing data. 
 
 

2.4 Polynomial Fit 
 
Another approach to imputing data is to fit the time 

series of each ensemble member with a smooth curve 
that captures the seasonal variability of temperature.  
The resulting curve can then be used to predict missing 
members of the time series.  A least squares polynomial 
fit has the advantage of being aperiodic and thus 
accounting for interseasonal variability. 
A sensitivity study was conducted to determine the most 
appropriate degree polynomial for fitting the data.  
Neither a linear fit (first degree polynomial fit) nor a 
second degree polynomial fit (dotted line) adequately 
capture the seasonal cycle in the temperature data. This 
inadequacy is reflected in Figure 2.   
 

 
 
Figure 2.  Comparison of a single polynomial fit (straight 
line), a second degree polynomial fit (dotted line), and a 
fifth degree polynomial fit (dashed line). 
 

The polynomial fit of degree five (dashed line) is 
used in this study because it was the lowest degree 
polynomial that adequately fit the yearly temperature 
data.  Polynomials with degrees greater than five did not 
produce lower MAEs.   

 
2.5 Iterative Polynomial Imputation 

 
Richmond et al (2008) developed an iterative 

imputation method that performed well on their synthetic 
data set.  This method is based on the fifth polynomial fit 
to the time series described above.  The iterative 
imputation method splits the ensemble forecast data 
into two separate datasets, with the split being based 
upon whether or not each case contains any missing 
forecasts.  If a day is missing an ensemble member 
forecast, that day is put into dataset one.  If the day has 
all ensemble members available, it is placed into 
dataset two.  A polynomial fit similar to that described in 
the previous section is constructed for each ensemble 

 
 



member in dataset one.  The resulting regression 
equations are then used to predict the missing values in 
the second dataset.  These predicted values are 
imputed into the missing dataset and the two datasets 
are merged.  New polynomial regression equations are 
computed for each ensemble member in the merged 
dataset. These regression equations are used to update 
the missing values in dataset two.  These new 
estimated missing values are merged with the original 
data. This process is repeated a third time.   
 
2.6 Fourier Fit 

 
In contrast to the two polynomial methods 

described above, a Fourier series directly fits the 
periodicity of the annual temperature cycle with a 
Fourier series.   Each of the ensemble members is fit 
with the first two Fourier harmonics (sines and cosines).  
As an example, Figure 3 shows the Fourier curve 
(dashed line) that fits the temperature forecasts (light 
solid line) from ensemble member #3.  Then, the Fourier 
curve is used to impute missing data for each ensemble 
member.  
 

 
 

Figure 3.  Fourier fit to ensemble member #3's 
temperature forecasts. The y-axis is the temperature in 
Celcius and the x-axis is the daynumber. 
 
2.7 Three-day Deviation 

 
The final method attempts to maintain the statistical 

characteristics of each ensemble member by computing 
the difference between the ensemble member forecast 
and the ensemble mean for each day.  The deviation 
between an ensemble member and the ensemble mean 
reflects the recent behavior of that member compared to 
the other members. The average deviation for each 
ensemble member is calculated for several windows: 
the entire year, the previous five days, previous three 
days, and previous day.   

Figures 4 and 5 show the results for the previous 
day, three-day, five day, and entire dataset (all days) 
mean deviation with a 10-day performance-weighted 
window and K-means regime clustering respectively.  
Based on these results, a three-day deviation was 
chosen for subsequent comparisons.  Although the 
results for all four windows are similar, the three-day 
deviation is the shortest window that could still be used 
if there are two consecutive days of missing data.  
Therefore, the three-day deviation was useable in more 
of the cases than the previous day deviation.  The five 
day and entire dataset mean deviation showed similar 
results, but were not as computationally efficient as the 
three-day mean deviation. 
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Figure 4. Sensitivity study for the optimal length of 
deviation from the ensemble mean with 10-day 
performance-weighted window post-processing. 
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Figure 5.  Sensitivity study for the optimal length of 
deviation from the ensemble mean with K-means 
regime clustering post-processing. 
 
 
 

 
 



3.  RESULTS 
 

The goal of this study is to determine a best method 
for replacing missing ensemble forecast data to be used 
in the development or real-time operational use in a 
consensus post-processing technique.  The Mean 
Absolute Error (MAE) is used as the accuracy metric 
while the verification rank histograms and ensemble 
spread are used to assess ensemble calibration.  To 
demonstrate ensemble calibration, verification rank 
histograms are used (Hamill 2000).   

The MAE for each of the methods of imputing the 
missing data is shown in Table 1, along with that for the 
baseline of case deletion.  The case deletion method is 
expected to always have the lowest MAE since it only 
includes the days with a complete ensemble.  Although 
that method could be useful for training a post-
processing method, it is not feasible for generating a 
real-time forecast.  Nonetheless, even if an ensemble 
member is missing, we must make the forecast, so we 
must use one of the implementation methods to provide 
an estimate for any missing values.  Therefore, the goal 
of replacing missing ensemble data is to minimize the 
MAE of the forecasts in order to best match the baseline 
provided by the case deletion method.   

The three-day mean deviation method produces the 
lowest MAE closest to that of the baseline for three of 
the four locations.  The exception is for Portland, where 
the three iteration polynomial fit produced the lowest 
MAE.  In that case, the MAE for the 10-day 
performance-weighted window was actually slightly 
lower than for the baseline method.  Table 1 also lists 
the standard deviations of the MAE across the 50 tests.  
The standard deviations are less than or equal to 
0.01°C for the 10-day performance-weighted window 
and less than 0.19°C for the K-means regime clustering 
method, which shows that there is more variability in the 
K-means regime clustering technique. 

The next step in testing the methods of replacing 
the missing data is to determine the effects on the 
calibration of the ensemble.  When replacing the 
missing ensemble members, we wish to produce 
ensembles whose dispersion is the same as those for 
the cases where all ensemble members are available. 
Verification rank histograms are used to test this 
correspondence. These rank histograms are created by 
iteratively tallying the rank of the verifying observation 
relative to the ensemble member forecasts, which are 
sorted from lowest to highest (Hamill 2000).  If the 
verifying observation is colder than the coldest 
ensemble member forecast, then bin one would get a 
tally.  If the verifying observation is warmer than the 
coldest ensemble member forecast, but colder than the 
second coldest ensemble member, then the second bin 
would get a tally.  There are nine bins since the verifying 
observation could be colder than all ensemble members, 

warmer than all ensemble members, or in between any 
of the eight sorted members. Therefore the plots denote 
 
Table 1. Mean Absolute Error (MAE) and mean 
Standard Deviation (STD) for all methods and locations. 

 Table 1 MAE STD 

  Olympia 

Method 
K-

means 
10-

Day 
K-

means 
10-

Day 

Case Deletion 1.49 1.51 0.09 0.00 

Fourier 1.60 1.60 0.08 0.00 

Persistence 1.58 1.60 0.09 0.00 
Ensemble Member 
Mean 1.77 1.80 0.11 0.01 

Polynomial 1.57 1.60 0.09 0.00 

Polynomial 3-Iterations 1.56 1.59 0.10 0.00 

3Day Mean Deviation 1.51 1.51 0.09 0.00 

  Astoria 

Method 
K-

means 
10-

Day 
K-

means 
10-

Day 

Case Deletion 1.34 1.35 0.07 0.00 

Fourier 1.40 1.39 0.10 0.00 

Persistence 1.38 1.41 0.09 0.00 
Ensemble Member 
Mean 1.51 1.53 0.09 0.01 

Polynomial 1.35 1.39 0.09 0.00 

Polynomial 3-Iterations 1.38 1.39 0.10 0.00 

3Day Mean Deviation 1.34 1.35 0.09 0.00 

  Portland 

Method 
K-

means 
10-

Day 
K-

means 
10-

Day 

Case Deletion 1.60 1.64 0.09 0.01 

Fourier 1.69 1.66 0.13 0.01 

Persistence 1.65 1.66 0.10 0.01 
Ensemble Member 
Mean 1.86 1.91 0.15 0.01 

Polynomial 1.68 1.65 0.12 0.00 

Polynomial 3-Iterations 1.63 1.63 0.11 0.01 

3Day Mean Deviation 1.65 1.64 0.11 0.01 

  Redmond 

Method 
K-

means 
10-

Day 
K-

means 
10-

Day 

Case Deletion 1.76 1.76 0.14 0.01 

Fourier 1.83 1.83 0.14 0.01 

Persistence 1.80 1.81 0.12 0.01 
Ensemble Member 
Mean 2.13 2.09 0.18 0.00 

Polynomial 1.84 1.83 0.14 0.01 

Polynomial 3-Iterations 1.88 1.83 0.17 0.01 

3Day Mean Deviation 1.74 1.76 0.12 0.01 
 

 
 



the number of occurrences of the verifying observation 
that fall below (colder) all the member’s forecasts, 
between any of the eight sorted member’s forecasts, or 
higher (warmer) than all the member forecasts. The 
verification rank histograms in Figure 6 compare the 
calibration of all methods for replacing the missing 
forecasts for Portland.  The histogram, (a), from the 
cases where no ensemble members are missing 
because of case deletion (baseline), illustrates that the 
verifying observation frequently fell in the middle of the 
ensemble or fell above (warmer) than the ensemble. 
This is indicated by the fact that bins five and nine had 
much higher counts than the rest.  Of the imputation 
methods, the three-day mean deviation best showed 
relatively high bins for numbers five and nine while 
retaining similar bins for the rest.  The three-day mean 
deviation did show bins one through three relatively 
higher than the cases without missing data; however, no 
other method kept bins five and nine distinctly higher. 

 

 
Figure 6. Verification rank histograms for all methods at 
Portland. (a) is case deletion, (b) is three-day mean 
deviation, (c) is polynomial fit with three iterations, (d) is 

a polynomial fit, (e) is persistence, (f) is Fourier, and (g) 
is ensemble member mean. 

 The rank histograms for Astoria (Figure 7) show 
clear underdispersion.  Underdispersion occurs when 
the ensemble spread is too small, causing the verifying 
observation to tend to fall either warmer or colder than 
the warmest or coldest ensemble member respectively 
(Hamill 2000).  We see such behavior in Figure 7a, for 
the baseline.  When imputing the missing data with the 
three-day mean deviation (Figure 7b), the verification 
rank histogram is quite similar to that of the baseline.  
The polynomial fit and the three iteration polynomial fit 
also produce verification rank histograms that are 
similar to that of the baseline.  The verification rank 
histograms for Olympia and Redmond (not shown) also 
indicate that the three-day mean deviation preserves the 
ensemble characteristics of their baselines. 

 

 
Figure 7. Verification rank histograms for all methods at 
Astoria. (a) is case deletion, (b) is three-day mean 
deviation, (c) is polynomial fit with three iterations, (d) is 
a polynomial fit, (e) is persistence, (f) is fourier, and (g) 
is ensemble member mean. 

 

 
 



 Figure 8 compares the rank histograms for the four 
different locations. The case deletion baseline method is 
the left column and the three-day mean deviation is the 
right column.  From the histograms, it is evident that the 
calibration of the ensembles when missing forecasts are 
replaced with the three-day mean deviation is similar to 
that for the baseline.  For Redmond, the histograms 
appear similar with the exception of the ninth bin, which 
is relatively higher when imputing the missing data. The 
verification rank histograms for Portland are also very 
similar, with relatively higher bins five and nine for both 
excluding and replacing the missing data.  The 
verification rank histograms for Olympia and Astoria 
also show that the three-day mean deviation produces 
ensemble dispersion similar to that of the case deletion 
method.  

 

 

Figure 8. Verification rank histograms for case deletion 
(left column) and three-day mean deviation (right 
column) for four locations: Redmond; first row (a, b), 
Portland; second row (c, d), Olympia; third row (e, f), 
Astoria; last row (g, h) 

Two final verification metrics are the mean and 
standard deviation of the ensemble spread.  When 
replacing missing ensemble forecasts, we wish to 
preserve the ensemble spread and the variations in the 
ensemble spread. The ensemble spread is calculated 
by subtracting the lowest forecast temperature from the 
highest forecast temperature.  Table 2 displays the 
results of the ensemble spread.   For three of the four 
sites, the three-day mean deviation method yields 
means and standard deviations of the ensemble spread 
closest to that of the baseline.  
  
Table 2.  Mean ensemble spread and standard 
deviations (STD) for all methods. Underlined are the 
methods to replace the missing data with the lowest 
mean and standard deviation. 

Olympia 
Method Mean STD 
Case Deletion 2.08 1.65 
Fourier 2.26 1.83 
Ensemble Member Mean 2.31 2.12 
Persistence 2.23 1.83 
Polynomial 2.25 1.80 
Polynomial 3-Iterations 2.23 1.78 
3Day Mean Deviation 2.15 1.72 

Astoria 
Case Deletion 1.04 1.40 
Fourier 0.98 1.22 
Ensemble Member Mean 1.04 1.28 
Persistence 1.00 1.23 
Polynomial 0.98 1.22 
Polynomial 3-Iterations 0.99 1.22 
3Day Mean Deviation 0.99 1.22 

Portland 
Case Deletion 2.78 2.05 
Fourier 2.98 2.21 
Ensemble Member Mean 3.04 2.51 
Persistence 2.91 2.15 
Polynomial 2.97 2.18 
Polynomial 3-Iterations 2.96 2.15 
3Day Mean Deviation 2.84 2.10 

Redmond 
Case Deletion 3.12 2.38 
Fourier 3.08 2.39 
Ensemble Member Mean 3.19 2.54 
Persistence 3.22 2.46 
Polynomial 3.16 2.39 
Polynomial 3-Iterations 3.17 2.39 
3Day Mean Deviation 3.08 2.26 

 
 4.  CONCLUSIONS 
 

For training a statistical post-processing and 
artificial intelligence techniques, researchers require a 
dataset that is sufficiently large to avoid overfitting.  
Thus, if the training dataset available is too small due to 
missing values, the values must be replaced.  In 
addition, for use of the resulting post-processing 

 
 



 
 

methods in real-time forecasting, one must make a 
forecast even when ensemble members may be missing, 
so a data imputation method is mandatory.  A 
requirement for replacing missing ensemble member 
temperature forecasts is to keep the characteristics of 
that ensemble member in the values that replace the 
missing data. Therefore, determining the best data 
imputation method is important for both developing the 
statistical forecast methods and operational use of these 
forecasting methods. 

This study seeks to determine the optimal method 
to replace missing ensemble temperature data when 
producing a consensus forecast through statistical post-
processing techniques.  The results from a one year test 
in the Pacific Northwest show that imputing the missing 
data with the three-day mean deviation from the 
ensemble mean produces the lowest mean absolute 
error for three of the four locations and also produces 
similar ensemble dispersion characteristics to the case 
deletion method.  When developing statistical post-
processing methods, archived ensemble forecasts are 
necessary.  If those forecasts are missing, some 
method is necessary to impute the missing data.  This 
study has shown that the three-day mean deviation 
method reduces MAE and preserves ensemble spread 
and dispersion. 

Our plans for extending this work includes statistical 
testing, experimenting with advanced statistical multiple 
imputation techniques, and using a longer dataset with 
more locations. It would be interesting to compare the 
effects of replacing missing ensemble member 
temperature forecasts for another region or to test the 
methods on additional forecast variables with different 
statistical properties.  It would also be interesting to test 
the three-day mean deviation for missing forecast data 
in long range forecast ensembles.   
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