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CIRES, NOAA ESRL/PSD and INSTAAR have collaborated to develop and » Determination of ozone volume mixing ratio from the chemiluminescence The SO-GasEx time series of mean ozone and ozone deposition velocity are shown in a4
deploy a fast ozone instrument on the Ronald H. Brown during the SO-GasEXx reaction: NO + O; — NO, + O, + hv Figure 7. Deposition velocity is computed from the observed covariance flux from v, = || s -oms o
cruise. This sensor, based on the chemiluminescence principle, combined with ‘ Figure 3. The sampling inlet Flux / [O4] (Lang et al, 2009). Note the relative magnitude of deposition velocity, in e ol
other turbulence instrumentation, is used to measure the air-sea flux of ozone Inlet sampling | of the sensor is located on comparison to Table 1. The variability in the deposition velocities is significant in T

908 negative values ~ 33%

by direct eddy correlation. This instrument has been previously deployed on / . ' 4 the Jackstait, at the sonic comparison to the nominal magnitude. In Figure 8, we show the histogram of ozone
2006-07 cruises in the Gulf of Mexico (TexAQS / GOMECC) and in the Eastern | 4 anemometer. Arr is pulled deposition velocity, along with relevant statistics of the observations. Figure 9 presents
Pacific Ocean (Stratus). Here, we present the measurement technique and :ZI:CL:%?\ irT::LObneulrlr\;\?hte?f:o the ozone deposition velocity in wind-speed averaged bins, compared to the

recent progress made in the GasEx-2008 data analysis. reacts with the NO (see ’ NOAA/COARE model with and without the oceanic turbulence routine (Fairall et al,
Figure 4). A photomultiplier 2007). Also present on this figure are some previous expeditions done in 2006.
tube (PMT) used to count

the resulting photons.
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and to develop a deeper understanding of the biological, chemical and controller 2 q ’x S i
physical processes involved in the ozone destruction into the oceans, several cooler | PC = pressure £ fﬁ ﬁ%* : > 0
recent studies have been conducted: onT 2 ! o generator controller 5 15} ﬂ" 0 0.1 , .
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2. A global scale analysis of ozone chemical destruction with a new modeling pT P aduaer | | :
study (Figure 2; Ganzeveld et al., 2009). TC = thermocouple Figure 7. Time series of the ozone mixing ratio (ppbv; left) and deposition N\ s
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velosiy Figure 4. Fast ozone instrument schematics. The UV Ozone monitor is used as a velocities, including NOAA/COARE model results (solubility of 0.3,
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