

Ship-borne Ozone Flux Measurements during Southern Ocean GasEx-2008 L. Bariteau¹, D. Helmig³, C. Fairall², J. Hare¹, L. Ganzeveld⁴, K. Lang³, J. Hueber³ 1. Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA; 2. NOAA, Earth System Research Laboratory (ESRL), Physical Sciences Division (PSD), Boulder CO, USA; 3. Institute of Alpine and Arctic Research (INSTAAR), University of Colorado, Boulder, CO, USA; 4. Department of Environmental Sciences, Wageningen University, Wageningen, Netherlands;

1. Introduction

CIRES, NOAA ESRL/PSD and INSTAAR have collaborated to develop and deploy a fast ozone instrument on the *Ronald H. Brown* during the SO-GasEx cruise. This sensor, based on the chemiluminescence principle, combined with other turbulence instrumentation, is used to measure the air-sea flux of ozone by direct eddy correlation. This instrument has been previously deployed on 2006-07 cruises in the Gulf of Mexico (TexAQS / GOMECC) and in the Eastern Pacific Ocean (Stratus). Here, we present the measurement technique and recent progress made in the GasEx-2008 data analysis.

2. Goals

Past experimental efforts provide a wide range of ozone deposition rates (**Table 1**), with over-water values ranging from $v_d \sim 0.006$ to 0.15 cm/s. Atmospheric chemistry models typically use a single value for ozone deposition velocity to ocean surfaces (*Figure 1*). To improve these models, and to develop a deeper understanding of the biological, chemical and physical processes involved in the ozone destruction into the oceans, several recent studies have been conducted:

1. Improved parameterization of air-sea ozone transfer by oceanic turbulence (Fairall et al., 2007).

2. A global scale analysis of ozone chemical destruction with a new modeling study (*Figure 2*; Ganzeveld et al., 2009).

3. The development of ship-borne ozone instrumentation (Bariteau et al., 2009; Lang et al., 2009).

Location	Technique	Deposition Velocity cm s ⁻¹	Reference
Sea Water Fresh Water	Box Enclosure Decay Box Enclosure Decay	0.03 - 0.06 0.1	Aldaz, 1969
Sea Water	Profile Method	0.08 - 0.15	Tiefenau and Fabian, 1972*
Sea Water	Wind Tunnel	0.04	Garland and Penkett, 1976
Sea Water Fresh Water	Laboratory Laboratory	0.025 - 0.09 0.015 - 0.1	Galbally and Roy, 1980
Lake Water	Tower Eddy Correlation	0.01	Wesely et al., 1981
Gulf of Mexico, North Pacific	Aircraft Eddy Correlation	0.056	Lenschow et al., 1982
Sea Water, off Southern California	Aircraft Eddy Correlation	0.02	Kawa and Pearson, 1989
Sea Water and Saline Solutions	Static Chamber Technique	0.006 - 0.014	McKay et al., 1992
South Atlantic	Budget	0.03	Heikes et al., 1996
Sea Water Fresh Water	Literature Review	0.01 - 0.05 0.01	Wesely and Hicks, 2000
Coastal Region North Sea	Tower Eddy Correlation	0.11	Gallagher et al., 2001
*referenced in McKay et al., 1992			
Gulf of Mexico (TexAQS 2006) Coastal regions (TexAQS 2006) Eastern Pacific (STRATUS 2006) Atlantic Ocean (GOMECC 2007) Gulf of Mexico (GOMECC 2007)	Ship-based Eddy Correla Ship-based Eddy Correla Ship-based Eddy Correla Ship-based Eddy Correla Ship-based Eddy Correla	ation 0.0 ation 0.2 ation 0.0 ation 0.0 ation 0.0 ation 0.0	45 Bariteau et al., 2008 :3 Bariteau et al., 2008 :27 Bariteau et al., 2008)16 Lang et al., 2008)17 Lang et al., 2008

Figure 1. Global map of the ozone deposition velocity over land and oceans during January, as previously described for the European Center Hamburg Model / Model for Atmospheric Transport and Chemistry. The mean oceanic value for v_d is 0.05 cm/s.

Contact: jeffrey.hare@colorado.edu

SO-GasEx.

• The sonic anemometer velocities are rotated to fixed earth coordinates and corrected for ship motion (Edson et al., 1998).

• The ozone signal is delayed relative to the sonic anemometer measurement, and the lag time is estimated using a puff system (*Figure 6*).

 Quality control filters, tube smoothing, and flow distortion corrections are applied to the flux data set. A Nafion membrane in the flow was used in order to avoid the corrections due to the presence of water vapor.

The preliminary results show a relatively low median value for the ozone deposition in the Southern Ocean of about 0.01 cm/s. The deposition velocity is shown to be nearly independent of wind speed, which contradicts results from some previous expeditions. The NOAA/COARE ozone parameterization appears to fit the observations only when the water-side turbulence is not activated.

We speculate that the preliminary results in Figure 9 may be a result of wind-speed dependent reactivity and/or due to changes in the distribution of total stress among its components (molecular, turbulent, and wave-correlated) in the unique Southern Ocean environment. Future studies include investigation of the dependencies of ozone deposition rates on oceanic conditions, such as the wave state, chemistry, etc.

• Bariteau, L, E.K. Lang, J. Hueber, D. Helmig, C.W. Fairall, and J.E. Hare, 2009: Ozone deposition velocity by ship-based eddy correlation flux measurements, J. Atmos. Oceanic Technol., in preparation.

• Edson, J.B., A.A. Hinton, K.E. Prada, J.E. Hare, and C.W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea, *J. Atmos. Oceanic Tech.*, 15, pp 547-562.

• Ganzeveld, L., D. Helmig, C.W. Fairall, J. Hare, and A. Pozzer, 2009: Atmosphere-ocean ozone exchange – A global modeling study of biogeochemical, atmospheric and water-side turbulence dependencies, Global Biogeochem. Cy., in review.

• Horst, T.W., 1997: A simple formula for attenuation of eddy fluxes measured with first-orderresponse scalar sensors, *Bound.-Layer Meteor.*, 82, pp 219-233.

Lang, E.K, L. Bariteau, D. Helmig, C.W. Fairall, J. Hueber, and J.E. Hare, 2009: Atmosphereocean ozone fluxes during the TexAQS 2006, Stratus 2006, GOMECC 2007, GasEx 2008, and AMMA 2008 cruises. J. Geophys. Res., in preparation.

Figure 9. Wind speed bin averaged observed ozone deposition velocities, including NOAA/COARE model results (solubility of 0.3, reactivity of 100 s⁻¹, Schmidt number of 500).

6. Summary & Future Work

References

• Fairall, C.W., D. Helmig, L. Ganzeveld, and J. Hare, 2007: Water-side turbulence enhancement of ozone deposition to the ocean, Atmos. Chem. Phys., 7, pp 443-451.