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Abstract

Dual polarization provides several additional radar
parameters that can be used when determining pre-
cipitation types. Like reflectivity, polarimetric data
points are spatially and temporally correlated and
patterns in the data can be recognized and used
when generating hydrometeor predictions. Current
classification algorithms that use polarimetric data
are based on existing theories about the charac-
teristics of various types of hydrometeors. These
algorithms work well for determining the precipita-
tion types in volume data obtained during summer
storms. However, they show very little skill when
tested against observations taken during the Winter
Hydrometeor Classification Ground Truth Program.

The large number of input parameters and the
availability of ground observations provides an ideal
environment for the application of supervised ma-
chine learning techniques. Many existing supervised
learning algorithms demonstrate only small amounts
of skill and are too inaccurate to be used success-
fully by forecasters. To improve accuracy, a spatial
learning algorithm can be used so that relationships
such as bright band can be automatically identified.
This was accomplished by using a hierarchical clus-
tering algorithm to group the polarimetric data into
regions of similar values. Afterwards, spatial rela-
tionships between clusters are identified and a spa-
tiotemporal relational probability tree was used to de-

termine which relationships correspond to different
precipitation types. Initial findings suggest that this
approach can increase accuracy when compared to
similarly sized decision trees that do not include spa-
tiotemporal information.

Once the learning portion of the algorithm is com-
plete, precipitation types can be classified using data
that is available at the time of the event. In addition,
as new forms of data become available the proba-
bility tree can be relearned with minimal changes to
the algorithm itself.

Introduction

The national network of WSR-88D radars will be
upgraded to polarimetric radars over the next few
years. This upgrade will provide enhanced informa-
tion which can be used to better classify winter hy-
drometeors. These additional data provide an op-
portunity to improve the algorithms used for winter
hydrometeor classification. In addition, many current
algorithms do not incorporate environmental data
when performing classification.

We applied machine learning techniques to avail-
able polarimetric data in order to address the short-
comings of current methods. These techniques help
to increase the accuracy of predictions in addition
to providing an opportunity for data mining. This is
an appropriate application of machine learning be-
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cause it requires the analysis of multiple parameters
that are not fully understood.

Background/Related Work

Significant research has been performed using po-
larimetric radars to estimate rainfall and classify hy-
drometeors in summer storms (Ryzhkov et al. 2003;
Schuur et al. 2003). This research has lead to a
variety of hydrometeor classification algorithms that
can be used to classify participation in both summer
and winter storms. However, when tested against
observations from the Winter Hydrometeor Classifi-
cation Ground Truth Program, the algorithms devel-
oped preform poorly. It is likely that some hydrom-
eteor types classified by the existing algorithms will
be accurate. For instance, ground clutter and hail
will often be predicted accurately by the hydrometeor
classification algorithm. Other things such as snow,
sleet, graupel, and freezing rain are either predicted
poorly or not predicted by the algorithm at all. The
focus of our research was to apply machine learn-
ing techniques to better classify precipitation during
winter storms.

Approach

In order to apply machine learning techniques to po-
larimetric data, we started by using the radar points
as the input space for existing machine learning al-
gorithms. We did not expect this to work well but
could use it as a baseline when evaluating the per-
formance of more advanced algorithms. When these
methods turned out to be unsatisfactory we moved
on to more advanced spatial algorithms that take ad-
vantage of the spatial locations of the radar points.
We also obtained additional data from the Rapid Up-
date Cycle (Benjamin et al. 2002) in hopes that it
would help distinguish between certain types of hy-
drometeors such as rain and freezing rain which ap-
pear very similar to the radar.

Data

Our main dataset consisted of polarimetric radar
data and observations obtained during the Winter
Hydrometeor Classification Ground Truth Program
(Elmore et al. 2007). This dataset consisted of ob-
servation of three individual winter storms which oc-
curred from November 28 2006 to December 1 2006,
January 11 2007 to January 14 2007, and January
19 2007 to January 20 2007. When combined there

Classifier 2.5 percentile 97.5 percentile
HCA 0.10412 0.10508
LDA 0.17458 0.17642
LDA + Temp 0.23217 0.23443

Table 1: Statistical analysis of HCA, and LDA with
and without temperature using a 95% confidence in-
terval.

were a total of 2147 individual ground observations.
Each ground observation was paired with a set of
five-by-five grids of radar data surrounding the ob-
servation. Each set contained either 15 or 20 five-
by-five grids stacked vertically and corresponding to
the tilt of the radar at the time the data were ob-
tained. These data provide our algorithm with knowl-
edge of the atmospheric conditions in the area above
each ground observation. Specifically, each point
of the grid contained values for the following the
radar parameters: reflectivity (Z), differential reflec-
tivity (ZDR), correlation coefficient (ρHV ), differential
phase (ΦDP ), and specific differential phase (KDP ).
In addition, each point contained the output of the ex-
isting hydrometeor classification algorithm (HCA).

Several of the precipitation classes we are analyz-
ing have very similar radar signatures, even with po-
larimetric data. For instance, freezing rain and rain
appear the same because they are virtually identi-
cal while in the air. To work around this problem
we included additional data such as surface temper-
ature when developing and running our algorithms.
To do this we selected temperature, humidity, freez-
ing level, and and wind speed data that was gen-
erated by the Rapid Update Cycle. RUC data are
very coarse so we selected data from the grid points
nearest the ground observation. A future improve-
ment would be to perform interpolation on the RUC
data in order to obtain more accurate values.

Initial Results

To benchmark our algorithms we performed a sta-
tistical analysis on the hydrometeor classification
algorithm by comparing the precipitation types it
shows with the precipitation types observed from the
ground. This comparison showed that HCA gives
a mean True Skill Score (TSS or Kuipers’s perfor-
mance index) of 0.105. In addition, a simple linear
discriminate analysis without the addition of temper-
ature gave a mean TSS of 0.176. Including temper-
ature data in the LDA increased the TSS to 0.233.
A summary of the results from this comparison is
shown in Table 1.

Other initial tests using traditional machine learn-

2



Classifier Accuracy TSS
ZeroR 39.32% 0
OneR 50.00% 0.278
IBk 39.47% 0.225
NaiveBayes 36.29% 0.175
REPTree 49.17% 0.285
RandomForest 48.41% 0.270
J48 45.83% 0.292

Table 2: Initial results from Weka

ing algorithms also showed improvements over the
hydrometeor classification algorithm. To perform
these tests we used the Weka (Waikato Environment
for Knowledge Analysis, Witten and Frank (2005))
data mining application to train a variety of classifiers
on the data. The methods we tested included:

ZeroR Predicts based on the mode classification of
training data.

OneR Predicts using the attribute that gives a min-
imum error.

IBk Lazy K-nearest neighbors classifier.

NaiveBayes Probabilistic classifier that uses
Bayes law.

REPTree Decision tree built using gain/variance
and pruned using reduced-error.

RandomForest Picks mode results of a large num-
ber of decision trees.

J48 Decision tree based on the C4.5 algorithm
(Quinlan 1993).

Most of these algorithms performed better than
the hydrometeor classification algorithm but still gave
rather poor results as shown in Table 2.

Removing bad values

Our initial experiments were completed by simply
picking the lowest elevation scan available that con-
tained valid radar data. This provided a decent base-
line but we improved upon this technique in several
ways. First, instead of discarding unknown data we
replaced them with censored values. Most of the un-
known values arise because the signal returned to
the radar was too weak to be measured. However,
for most of the parameters there is a known value
for this “clear air” return. For instance, clear air re-
turns for reflectivity were set to -30 dBz. A list of the
censored values we used is shown in Table 3.

Parameter Value Meaning
Z -30 No return
ZDR 0 Spherical objects
ρHV 0 Consistent shape/size
ΦDP - Used KDP instead
KDP 0 No loss of signal
HCA 7 Unknown precip type

Table 3: Censored values

In addition to setting censored values we assumed
that the hydrometeor classification algorithm is good
at detecting ground clutter. Therefore, we removed
all the observations where the mode HCA output
was ground clutter.

We encountered several difficulties while attempt-
ing to apply existing machine learning algorithms to
our dataset. One reason for this was that the input
vector was variable in size, containing either 15 or 20
grids associated with each observation. The actual
elevation of each of these grids also varied due to
the proximity of the observation to the radar taking
the measurements. Furthermore, many of the grids
for a particular observation contained only censored
values because the precipitation did not fill the en-
tire volume. For example, if two very similar cloud
structures are located at different elevations with dif-
ferent distances to the radar the values contained in
the grids may be completely different. That is, each
point in the radar grid initially corresponds to a cer-
tain elevation and position instead of a specific part
of the precipitation. One way to fix this would be to
remove clear air data points around the precipitation
and then scale the data to a fixed number points. Af-
ter this is done a particular data point will always cor-
respond to, for instance, the top or bottom of the pre-
cipitation. An alternative method which we to chose
to pursue was to use spatial algorithms which do not
rely on the position of data points in a grid.

Spatial algorithms

Polarimetric radar can be used to detect precipitation
types based entirely on the differences in the phase
of the returned values (Lim et al. 2005). Using this
technique it is unnecessary to consider the relation-
ships between different data points in the grid. How-
ever, the accuracy can be improved by using spa-
tial algorithms to detect patterns in the locations of
data points. One condition that can detected using
spatial algorithms is the presence of a bright band
(Zafar and Chandrasekar 2005). Bright band occurs
when ice crystals melt before reaching the ground.
Ice crystals tends to have a larger volume but reflect

3



Classifier Accuracy TSS
ZeroR 39.38% 0
OneR 50.46% 0.288
IBk 46.66% 0.305
NaiveBayes 21.55% 0.150
REPTree 51.67% 0.327
RandomForest 53.34% 0.343
J48 45.07% 0.284

Table 4: Partial derivatives in Weka

lower amounts of microwave energy than liquid wa-
ter. When ice crystals begin to melt they are coated
with a thin layer of water while staying roughly the
same size, this causes the reflectivity in the melt-
ing region to increase. If a bright band is present it
can be easily determined that the precipitation at the
ground will either consist of liquid water or refrozen
precipitation such as sleet or graupel.

Partial derivatives

One simple way to implement a spatial algorithm is
to perform some spatial preprocessing on the data
and use the result as input for existing machine
learning algorithms. One such form of processing is
to calculate partial derivatives with respect to space.
Initially we implemented this by calculating finite dif-
ferences between data points in the x, y, and z di-
rections. A further refinement for future work will be
to use a local linear least squares method to calcu-
late a better derivative. This method can also help
us determine how much noise is present in the data.
Results of using partial derivatives are given in Table
4.

Relational Probability Trees

When performing spatial learning, it is advantageous
to provide the learning algorithm with information on
how different data points are related in three space.
One of the simplest methods of doing this is to use
a relational probability tree (Neville et al. 2003) and
encode the data points as objects and the positions
as relationships between the points. Our specific im-
plementation was to encode each of the radar points
as an object and created a bidirectional relation be-
tween points that are left-right, forward-behind, and
above-below each other. As such we encoded the
entire set of five-by-five grids as a single gridded
structure. We also included a single “observation”
point that stored surface data and the class label as
attributes.

Spatiotemporal Relational Probability Trees

Similar to relational probability trees, spatiotempo-
ral relational probability trees classify data by us-
ing a set of objects and the relationships between
them (McGovern et al. 2008). However, the SRPT
was specifically designed for data that includes spa-
tial and temporal information. One of the main fo-
cuses of our research was to apply spatiotemporal
relational probability trees to real world data, in our
case these were polarimetric radar data.

When using SRPTs an additional clustering step
was performed before creating the relations. Aggre-
gating the radar data into clusters instead of individ-
ual points allows groups of points with similar val-
ues to be identified while also decreasing the search
space by reducing the number of features and re-
lations that are used (Lakshmanan 2001). Cluster-
ing was performed by using both the return values
at each point and the location of the points in three
space. Each radar parameter was clustered sepa-
rately which resulted in clusters of Z, ZDR, ρHV , and
KDP . A table of the features (clusters and observa-
tions) and relations used is shown in Table 5.

After clustering, a variety of relationships between
the clusters such as “nearby” and “overlaps” were
identified. In addition, relationships such as “on top
of” were also included because they allow the SRPT
to classify the same patterns using a smaller tree
than if it only had attributes for things such as dis-
tance and direction between clusters.

Results for the SRPTs were obtained by attempt-
ing to classify each ground observation as either liq-
uid participation, solid participation, or no participa-
tion. Experiments were run using cross validation
and a variety of settings for the maximum tree depth
and the alpha parameter (confidence in each distinc-
tion). The mean TSS when testing was 0.361 with a
standard deviation of 0.0243 between different ex-
periments. However, the standard deviations for the
TSSs on the individual folds of each experiment were
higher, around 0.1. This could be an indicator of
noise in the datasets and may also have been influ-
enced by the limited number of ground observations
that were available.

Conclusions and Future Work

The existing hydrometeor classification algorithm is
in need of improvement and machine learning can
be used to do this. Due to the nature of the data,
spatial algorithms can also be used to improve the
accuracy of predictions.
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Feature Attributes Description
Z, ZDR,
KDP , ρHV

size, max value, min value, mean value, cluster
top, cluster base, cluster volume

Clusters of radar data

HCA number of points, predicted precip. type Clusters of HCA predictions
observation time, latitude, longitude, temperature, wind speed

(urel, vrel), relative humidity, freezing level
Surface data at observation point

Relations Attributes Description
nearby edge distance, vertical distance, horizontal dis-

tance, Cartesian distance
Non adjacent clusters within a
certain threshold

overlaps A-B % overlap, B-a % overlap, total % overlap Overlapping clusters
equals none Clusters have the points
contains size difference Cluster A contains cluster B
adjacent none Edges of clusters meet
above none Cluster A is above Cluster B

Table 5: Spatiotemporal features and relations

Currently one of the biggest challenges when ap-
plying machine learning to hydrometeor classifica-
tion is that the available data are not extremely ac-
curate. To compound this, ground observations were
only available for three individual events. To supple-
ment the radar data it is useful to also include surface
data such as temperature.

In the future we would like to have additional data
to work from when training the various classifiers.
As the upgraded WSR-88D radars become opera-
tional it will provide a significant amount of polari-
metric data so the main challenge will be obtaining
accurate values to use as ground truth. In addition to
obtaining more data, we would like to improve upon
the SRPT algorithm so that it can inherently classify
spatial data without as much of a need for clustering
and determining relations between clusters before-
hand.
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