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1. Introduction 
 

Advances in real-time observation, information 
technology and modeling techniques are fueling a 
paradigm shift in short-term weather forecasts from 
static numerical model forecasts to dynamic and 
adaptive model forecasts, where, for example, regional 
models can be run at high resolution for areas with 
rapidly evolving severe weather. A timely and accurate 
severe weather forecast requires timely detection or 
prediction of weather events, easy access to real time 
observational data, advanced weather models and large 
computing resources in an integrated framework.  The 
Linked Environments for Atmospheric Discovery (LEAD) 
project (Droegemeier et al., 2004) is a large-scale, 
interdisciplinary NSF-funded research project that aims 
at developing such a cyber-infrastructure to enable 
identifying, accessing, decoding, assimilating, analyzing, 
mining, and visualizing a broad array of meteorological 
data and model output necessary for dynamic and 
adaptive weather forecasts (Droegemeier et al., 2005). 
One of the key components for dynamic and adaptive 
forecasts is the detection of current regions 
experiencing severe weather and prediction of regions 
of future threats. Current regions of significant weather 
events can be identified from real time observational 
data. For instance, individual thunderstorms can be 
detected from radar reflectivity measurements using a 
simple thresholding technique.  Normally, regional 
severe weather events emerge as clusters of local 
storms, and it is of more interest for forecast model 
domain selection to detect the regions of storm clusters 
rather than individual storms. Using a spatial data 
clustering technique, Li et al. (2008) developed an 
algorithm for automated detection of storm clusters from 
WSR88-II radar measurements. On the other hand, the 
prediction of future weather events relies on numerical 
weather prediction output. A direct method is to apply a 
thresholding technique to one or more model output* 
fields to detect regions of severe weather. These 
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regions may represent low pressure systems, strong 
vorticity, strong vertical updrafts, large convective 
available potential energy (CAPE), or a combination of 
any of these variables. However, identifying appropriate 
numerical model output fields and corresponding 
optimal thresholds can pose a big challenge.  
 

In this paper, we describe a novel data mining 
approach to automatically identify potential regions of 
severe weather for on-demand modeling (ODM). This 
approach makes some assumptions for phenomena 
detection. First, we assume that significant values in any 
model output field suggest regions of interest in that 
field. Second, we assume that a difference field – 
defined as the absolute difference between model 
output fields from two consecutive runs valid at the 
same time – contains important weather phenomena 
information. That is, the difference fields indicate where 
weather is changing rapidly or is most sensitive to 
variations in model initial conditions. For this study, the 
Phenomena Extraction Algorithm (PEA), developed at 
the Information Technology and Systems Center of the 
University of Alabama Huntsville, is used to detect 
regions of interest from each model variable and its 
corresponding difference field. The PEA can identify 
regions of interest characterized by abnormal intensity 
and local variance based only on image data statistics. 
Using the regions identified from each individual model 
output variable, a composite image is generated, with 
higher values for those regions identified in multiple 
individual variables. The PEA is applied once more to 
the resulting composite image in order to identify 
regions of greatest interest for weather events. The rest 
of this paper is organized as follows: Section 2 
describes the model data used in this study; Section 3 
describes the phenomena detection approach; Section 
4 discusses experiment and result analyses; finally, 
Section 5 concludes the investigation. 
 
2. Data 
 

The purpose of this study is to assist in ODM 
activities, focusing on regions with emerging severe 
weather.  Here, North American Mesoscale (NAM) 



model forecasts interpolated to a grid with 40-km 
resolution (NAM 212 grid) were analyzed using the PEA 
to determine areas of interesting weather.  The NAM is 
produced by the National Centers for Environmental 
Prediction (NCEP) and is initialized every 6 hours.  Each 
initialization spawns forecasts for three hour intervals 
out to 84 hours from the forecast initialization time.  
Theoretically, NAM analyses could be used in the same 
way for nowcasting purposes.  At each output time, a 
total of 617 model variable fields are reported.  These 
outputs include 2D fields (e.g. mean sea level pressure, 
CAPE and precipitation) and 3D fields (e.g. geopotential 
height, temperature, moisture, wind and vorticity). The 
data used in this study are from one winter month, 
consisting of 29 forecasts ranging from 17 January 2007 
to 22 February 2007.  
 

For this study, individual parameter fields for a 
given model run are directly obtained from an in-house 
web service except the total precipitation field and 
convective precipitation field, a total of 615 fields. 
 
3. Approach 
 

The PEA is a statistical feature extraction algorithm 
that automatically identifies phenomena of interest 
(Ramachandran et al, 2006). A “phenomenon” in a 
geospatial data set can be identified as a region 
significantly different from the rest of the scene. 
Statistically, therefore, a region of geophysical 
phenomenon can be characterized as having a value 
higher or lower than the average background intensity 
value and/or having higher intensity variations or 
gradients as compared to the remaining data points. 
The PEA uses hypothetical T- and F-tests to iteratively 
decompose an image (in this case data from a model 
pressure level or other variables) and identify regions of 
interest. For more details refer to Ramachandran et al 
(2006). Previously, the PEA was used in the LEAD 
project to identify heavy precipitation from the NAM 
precipitation output as a LEAD capability demonstration 
(Clark et al. 2006).     
 

For each 3-hour forecast initialized from the daily 
00Z model run, the PEA is applied to each of the 615 
NAM fields to obtain regions of interest for that particular 
field. The PEA output for a field is a binary mask image, 
indicating whether a pixel belongs to a region of interest 
or not. A composite image is then generated by 
averaging all 615 mask images for a given forecast. 
Large intensity values in the composite image 
correspond to regions which are identified in multiple 
individual NAM fields. As a result, regions of large 
intensity in the composite image suggest regions of 
interest contributed from many NAM fields. The PEA is 
then applied to the composite image to extract final 
regions of interest. A statistical score S is used to 
evaluate the relative importance of the individual NAM 
fields in detecting the overall regions of interest. 
Assuming P is the set of pixels identified in regions of 
interest, Pi indicates pixels from model variable field i 
and Pcomp indicates pixels from composite image. Then 

the score Si is defined as Pi,i / Pcomp where Pi,i is the 
intersection of Pcomp and Pi This statistical score is 
calculated for each parameter field over each of the 29 
model runs.  The mean scores for individual parameters 
are ranked with the top 10 NAM fields listed in Table 1. 
This table shows that the pressure vertical velocity fields 
in the mid-troposphere are the highest contributors to 
overall regions of interest. 
 

The difference field characterizes rapid changes in 
weather conditions exhibited in the model for each 
model output variable and is defined as the absolute 
difference between the 3-hour forecasts from the 00Z 
initialized model run and the 15-hour forecasts from the 
12Z initialized model runs from the previous day.  Large 
differences may indicate where weather is changing 
rapidly or is most sensitive to variations in model initial 
conditions. Therefore, it is assumed that difference 
fields contain valuable information on regions of 
significant weather events of interest for further refined 
forecasts. Similar to the approach described above for 
NAM fields, the PEA is applied to the difference fields to 
further detect regions of interest. Table 2 shows the top 
10 NAM difference fields that contribute most to 
detected regions. From Table 2, it is apparent that the 
most significant contributors are parameters such as 
precipitation fields and vorticity fields, which are known 
to be associated with significant weather events.  
 

Based on the analyses described above, the 
algorithm for automated detection of regions of weather 
interest is as follows: 

1. Apply PEA to each NAM field to obtain mask 
field for regions of interest. 

2. Apply PEA to each NAM difference field to 
obtain mask field for regions of interest.  

3. Calculate a composite field as the weighted 
average of mask fields from each NAM and 
NAM difference field. The weights are the 
relative scores with top 10 shown in Tables 1 
and 2. 

4. Apply PEA to composite field to get mask field 
for overall regions of interest. 

5. Apply standard region growing technique to 
extract these regions. 

6. Apply higher threshold to regions with size 
larger than 300 grid points in order to obtain 
mesoscale phenomena. The threshold is 
determined based on data statistics of the 
particular region.         

 
4. Experiments and Results 
 

Figure 1 shows the results of this method using a 3-
hour NAM model forecast initialized at 00Z on 13 
February 2007. In this case, there was a significant 
active weather system in the central United States. This 
system can be identified from the 850 mb wind pattern 
shown in Figure 1d. From the mean sea level pressure 
field shown in Figure 1a, two strong low pressure 
systems existed:  one off the west coast of Canada and 
the other off the east coast of Canada. There was also a 



weaker area of low pressure in the central United 
States, which produced weather events. In order to 
better understand the phenomena of interest, the 
detected regions are overlaid with mean sea level 
pressure contour lines and wind vectors at 1000 mb 
(Figure 1b), 500 mb (Figure 1c) and 850 mb (Figure 1d), 
respectively. Identified regions are shown as dots in the 
figures. Among other detected regions, the algorithm 
successfully identified regions corresponding to the 
three low pressure systems, as shown in these figures. 
 

To further validate the algorithm, the identified 
regions of interest were compared with the NEXRAD 
radar reflectivity images obtained from the National 
Climate Data Center.  Shading in Figure 2a indicates 
the detected regions of interest from Figure 1, with the 
NEXRAD national mosaic reflectivity image from the 
same time shown in Figure 2b for comparison.  Because 
the NEXRAD radar network only covers most of the 
contiguous U.S., the regions of interest corresponding to 
the low pressure systems over both Canadian coasts, 
the Atlantic and Pacific Oceans, and Mexico are not 
covered by radar. Note that the identified region over 
the central U.S., where there is good radar coverage, 
correlated well with areas of high radar reflectivity. 
However, the identified region did not extend as far 
north and east as the radar image.   The identification of 
only the core area could be caused by the design of the 
algorithm, which forcibly breaks down the large regions 
of interest into mesoscale systems. The algorithm also 
successfully identified the location and size of weather 
regions over southern Florida and central California. 
The regions identified by the algorithm over the 
coastline of Washington and Oregon do not correlate as 
well with radar echoes; this could be due to greater 
variation of numerical weather forecasts over the 
eastern Pacific where upstream data are sparse.        
 

The algorithm did not perform as well in another 
instance. Figure 3 shows the regions of interest 
identified in a 3-hour NAM forecast initialized at 00Z on 
17 February 2007 and the corresponding radar 
reflectivity image. Compared to the radar reflectivity 
image in Figure 3b, the algorithm successfully identified 
an interesting region over Washington State. It also 
approximately identified the regions of interest over 
Colorado, Wyoming and Nebraska. However, it failed to 
identify the core weather systems over Illinois. More 
effort is required to examine the NAM model output in 
order to figure out what caused this failure; it could be 
due to the relatively predictable nature of the large 
weather system and its location in the middle of country 
where abundant observations can result in small run-to-
run variations in numerical models.  
 
 
 
 
 

5. Conclusion 
 

This paper presents the preliminary results from a 
novel method of model-based weather event detection.  
This method is based on the PEA, a statistical data 
mining algorithm.  Based on preliminary examination of 
29 days of 3-hour NAM forecasts, the proposed method 
is very promising in identifying regions of interest, which 
may be used to predict regions of future weather events. 
The outcome from this method may be helpful in 
assisting meteorologists define areas where higher 
resolution model runs are needed. This method can be 
fully automated with no human intervention required.  
More effort is needed to examine if and to what extent 
regions are falsely identified.  Further study is also 
required to analyze individual regions of interest and to 
understand what parameter fields contribute to the 
identification of these regions.  This will aid in filtering 
out falsely identified regions if such regions exist. 
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Table 1. Top 10 list of relative score of NAM fields 
that contributes most to regions of interest  
NAM Field Score 
650 hpa Pressure Vertical Velocity 0.5374 
600 hpa Pressure Vertical Velocity 0.5366 
625 hpa Pressure Vertical Velocity 0.5361 
575 hpa Pressure Vertical Velocity 0.5340 
675 hpa Pressure Vertical Velocity 0.5320 
700 hpa Pressure Vertical Velocity 0.5288 
725 hpa Pressure Vertical Velocity 0.5246 
550 hpa Pressure Vertical Velocity 0.5243 
180 hpa -150 hpa Pressure Vertical Velocity 0.5206 
500 hpa Pressure Vertical Velocity 0.5176 
   
 

 
 
 
Table 2. Top 10 list of relative score of NAM 
difference fields that contributes most to regions of 
interest  
NAM difference field Score 
Total column condensate 0.6678 
Total column snow 0.6336 
Precipitation rate 0.6017 
Total precipitation 0.5919 
725 hpa Pressure vertical velocity 0.5909 
700 hpa Pressure vertical velocity 0.5856 
675 hpa Pressure vertical velocity 0.5829 
775 hpa Pressure vertical velocity 0.5813 
700 hpa Absoluate vorticity 0.5805 
650 hpa Pressure vertical velocity 0.5761 
 

 

                                     
                  
                                                 (a)                                                                                            (b) 
     

                                 
                                                  (c)                                                                                             (d) 
Figure 1 Results for NAM forecast at 02/13/2007, 03Z with model run at 02/13/2007, 00Z. (a) Mean sea level pressure 
field. Identified regions of interest shown as dots with contour overlay of mean sea level pressure and wind field at (b) 
1000mb, (c) 500mb and (d) 850mb, respectively.  
 



                      
(a) (b) 

Figure 2 (a) identified regions of interest in cylindrical map projection at 03Z, 02/13/2007, (b) NEXRAD national 
mosaic radar reflectivity image at 03Z, 02/13/2007. 

                      

(a) (b) 

Figure 3 (a) identified regions of interest in cylindrical map projection at 03Z, 02/17/2007, (b) NEXRAD national 
mosaic radar reflectivity image at 03Z, 02/17/2007. 
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