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1. Introduction 
 
Cloud-to-ground (CG) lightning data from the 
National Lightning Detection Network (NLDN) 
have been available to National Weather 
Service (NWS) forecasters for over a decade.  
These data have been used for climatological 
studies (Fig. 1a) and for real time forecasting. A 
few NWS Weather Forecast Offices (WFOs) 
also receive total lightning data covering small 
regions within their county warning areas. These 
data come from local Lightning Mapping Arrays 
(LMAs) or Lightning Detection and Ranging 
(LDAR) networks (Fig. 1b-c). The upcoming 
GOES-R satellite will house a Geostationary 
Lightning Mapper (GLM) that will provide total 
lightning information to all NWS stations 
(Goodman et al. 2008). 
 
Although CG and intracloud (IC) lightning are 
important in their own right, lightning also 
appears to be related to severe storms such as 
large hail producers, tornadoes, and damaging 
straight line winds. Figure 2 presents CG flash 
locations and preliminary severe storm reports 
for 5 May 2003 to illustrate the spatial 
collocation between CG lightning and severe 
storms.  Total lightning data, used in conjunction 
with radar data, will provide researchers and 
forecasters with a better understanding of 
thunderstorm morphology and its relation to 
severe weather (Steiger et al. 2007).  This 
suggests that lightning data can be used to 
assess the potential for severe weather events 
and to aid in warning decision support. 
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Fig. 1 a) Cloud-to-ground flash density from the 
NLDN computed on a 20 km grid between 2002-
2006 b) Plan view of WSR-88D data, SCIT defined 
cells (boxes), and LDAR sources (white dots) for a 1 
min period c) Cross-section during the same period 
as b) displaying the LDAR sources and the volume 
of reflectivity data. 
 
Algorithms for ingesting and processing NLDN, 
LDAR/LMA, WSR-88D, and RUC-derived data are 
contained in the Warning Decision Support System  
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Fig. 2 NLDN cloud-to-ground flashes (black 
dots) and preliminary severe storm reports 
(colored circles) on 5 May 2003. 
 

 
 
Fig. 3 Example of the graphical user interface 
(GUI) within the Warning Decision Support 
System – Integrated Information (WDSS-II) 
software. Both plan and cross-section views of 
quality controlled reflectivity data are shown.  
 
– Integrated Information (WDSS-II, Lakshmanan 
et al. 2007) software.   
 
These algorithms create spatial grids of 
meteorological fields, and can be modified to 
create higher-order, user-defined parameters.  A 
major advantage of WDSS-II is that all data 
sources share a common spatial domain, 
allowing direct comparisons between them (Fig. 

3).  This paper describes our recent modifications to 
WDSS-II and illustrates the benefits of automating 
the development of the datasets needed to 
investigate lightning production within severe and 
non-severe storms. 
 
Our overriding theme is to derive storm-scale 
relationships between lightning and radar data to 
ensure their best possible utilization in the NWS 
warning assessment process.  Specifically, we seek 
to derive statistical relationships between radar-
derived parameters and total lightning data in order 
to distinguish between severe and non-severe 
storms.  These relationships then will be used to 
develop algorithms and guidelines as to whether a 
particular storm is likely to require a warning.  Armed 
with these newly developed techniques, NWS 
offices will be able to better utilize current lightning 
data to assess severe storm potential and will be 
prepared for the deployment of the GLM. 
 
2. Background 
 
Numerous studies have investigated patterns of 
NLDN-derived CG lightning and their relation to the 
development of severe storms (Kane 1991, 
MacGorman and Burgess 1994, Knapp 1994, Biggar 
2002, Carey et al. 2003).  These studies focused on 
the CG flash rate, the location of CG flashes in both 
space and time, and the polarity of the CG flashes.  
For example, Biggar (2002) noted that a tornado 
touched down ~10 min after a significant polarity 
reversal from mainly positive CG (+CG) to mainly 
negative CG (-CG).  His research suggested that CG 
data could improve tornado warning time by as 
much as 10 min for low-topped supercells that are 
distant from the radar.  In a nationwide study, Carey 
et al. (2003) noted a positive trend between mean 
hail size up to 8 cm in diameter and the mean 
percentage of positive CG. Studies also have 
examined relations between the multiplicity and 
peak current of CG lightning and severe storms.   
 
Total lightning signatures also have been related to 
severe storm development.  Williams et al. (1999) 
found that sudden increases in total flash rate, 
denoted “lightning jumps”, preceded tornado 
occurrences in Florida by as much as 20 min.  
Lightning activity has been found to vary with updraft 
evolution, while updraft strength largely governs 
storm intensity (Gatlin 2007).  Gatlin (2007) noted 



that when lightning jumps alone are used as 
severe weather predictors, they produced a 
probability of detection of 0.985 and a false 
alarm rate of 0.446.  The descending 
mesocyclone tornadoes in his study were 
preceded by lightning jumps by ~ 30 min, 
whereas the lead-time was 18 min for the non-
descending type.  Patterns in total lightning also 
have been related to severe hail and winds.  
Goodman et al. (2005) noted a strong increase 
in total lightning 9 min before damaging winds 
were observed at the surface during a severe 
summertime pulse thunderstorm.   
 
Very few studies have compared the lightning 
characteristics of severe storms with those of 
non-severe storms. MacGorman and 
Morgenstern (1998) found differences between 
the percentages of +CG and –CG in twenty-five 
mesoscale convective systems compared to all 
thunderstorms in Oklahoma. Differences in peak 
currents and flash rates also were noted. Carey 
and Rutledge (2003) used NLDN data to 
investigate a region extending from the 
Kansas/Colorado border into Minnesota where 
positive anomalies in the percentages of +CG 
lightning and peak currents were observed.  
They found that the properties of lightning 
associated with severe storms during the warm 
season were different from those of non-severe 
storms. Montanya et al. (2007) noted that the 
average multiplicity of –CG flashes was 1.74 
and 1.17 for severe and non-severe storms, 
respectively, while their average peak currents 
were -11.7 kA and -10.65 kA, respectively. 
Gatlin (2007) examined twenty storms over 
northern Alabama that produced severe storm 
reports. They then contrasted the total lightning 
characteristics of tornadic storms vs. those 
producing only large hail or damaging winds.   
 

These types of studies should be expanded to 
include other regions of the country, and 
additional studies contrasting the lightning 
characteristics of severe vs. non-severe storms 
are needed for NWS forecasters to effectively 
use total lightning data in assessing severe 
storm potential. 
 

Most previous research has defined storm cells 
using the Storm Cell Identification and Tracking 

 
 
Fig. 4 Example of SCIT defined cells (numbered 
boxes) overlain on composite reflectivity.  Also 
included are the LDAR flash initiation locations 
(white dots) and the cloud-to-ground flash locations. 

 
(SCIT) algorithm (Fig. 4). Predefined radii linked the 
NLDN and LDAR/LMA data with individual storms.  
Although useful, SCIT tracking is intermittent and 
typically utilizes only a limited number of radar 
parameters.  This has limited the scope of studies 
seeking to determine relationships between 
lightning, radar, and severe weather. However, the 
National Severe Storms Laboratory (NSSL) and 
others recently have developed new tools and 
techniques that facilitate these types of analyses.  
Newly developed software, enhanced data 
resources, and improved analysis techniques now 
allow detailed investigations of the relations between 
total lightning and radar within individual storms.  

 
3. Our Methodology 
 
The previously described relationships between total 
lightning, radar, and storm severity emphasize the 
need to quantitatively evaluate lightning data when 
accessing the potential for severe weather.  
Previously, the vast amounts of data and somewhat 
limited software capabilities necessitated a case 
study mode for storm analyses.  However, seasonal 
and geographical variations strongly influence 
correlations between lightning and severe weather 
(Carey and Buffalo 2007).  This suggests that robust 
statistics obtained from a large number of storms are  



 

 
 

Fig. 5 a) RUC-derived storm relative helicity 
computed using the near-storm environment 
(NSE) algorithm within WDSS-II b) NSE winds 
and QC reflectivity at 8 km AGL.  
 
needed to accurately quantify these 
relationships.  Although developing such a 
dataset is not feasible using traditional methods, 
the WDSS-II software provides an ideal 
framework for developing lightning and radar 
databases and for making comparisons between 
them. This paper briefly describes WDSS-II and 
focuses on our algorithm modifications made in 
order to obtain a large database of storms from 
which to develop severe storm guidance. 
 
WDSS-II allows users to simultaneously view 
and manipulate data from multiple sources.  It 
contains a suite of algorithms to combine 
information about the Near-Storm Environment 
(NSE) from the Rapid Update Cycle (RUC) 
model with WSR-88D radar data to compute a  

 

 
 
Fig. 6 Example fields resulting from the merger of 
the RUC near-storm environment (NSE) and WSR-
88D parameters.  These include the  precipitation 
rate, the echo top at 30 dBZ, and the reflectivity at   
0 

o
C, -10 

o
C, and -20 

o
C. 

 
large number of desired parameters.  For example, 
Fig. 5a displays RUC-derived storm relative helicity, 
while Fig. 5b illustrates our ability to overlay the 
RUC-derived parameters onto WSR-88D data.  
Specifically, Fig. 5b displays NSE winds overlain on 
reflectivity at 8 km AGL.  The 3-D wind field is used 
to advect features and to compute higher order 
radar and RUC-derived parameters.   These 
parameters range from basic reflectivity and radial 
velocity fields to more advanced parameters such as 
precipitation rates and rotation tracks.  Figure 6 
illustrates some example parameters resulting from 
the radar-RUC merger.  These derived parameters 
then can be superimposed onto CG lightning 
information from the NLDN and/or total lightning 
data from LDAR/LMA networks to investigate 
lightning patterns within individual storms. 
 
A major advantage to including lightning data is their 
temporal resolution.  The improved resolution is 
used to enhance WSR-88D data to more accurately 
describe storm-scale processes.  Various WDSS-II 
algorithms are modified and combined to create both 
basic and enhanced gridded fields of NLDN and 
LDAR/LMA parameters.   
 
Characteristics of total, negative, and positive CG 
lightning are considered separately, and include the 
average polarity, multiplicity, and peak current within 
a specified grid cell (2×2 km).  Currently, these    



 
 

Fig. 7 a) Time series of average dBZ at the 
melting level (dark blue), at -10 

o
C (green), and 

at -20 
o
C (light blue) as well as average cloud-to-

ground multiplicity (red) and flash density 
(yellow) throughout the life cycle of cell 133 b) 
Average CG peak current (light blue), flash 
density (dark blue), and percentage of +CG for 
the same period. 
 
grids are computed for 1-, 5-, and 10-min 
periods, and are reported at 1-min intervals.  
Figure 7 provides examples of the CG 
characteristics and radar-derived parameters 
that we are calculating within WDSS-II.   
Average reflectivity values at 0 

o
C, -10 

o
C, and -

20
o
C are compared with the average CG 

multiplicity and flash density within an individual 
storm (Fig. 7a).  The average peak current, flash 
density, and polarity of CG flashes within the 
same storm are depicted in Fig. 7b.  These 
newly computed fields allow us to take full 
advantage of the CG characteristics currently 
reported by the NLDN.     
 
Although CG lightning provides a useful 
indicator of storm intensity, IC lightning data 
offer a much more detailed view of storm-scale  

 
 
Fig. 8 a) Vertical distribution of LDAR sources at 1 
min intervals during a radar volume scan (i.e., 
density at 1 km intervals between 1 and 20 km) b) 
Cross-section of LDAR sources (white dots) and the 
WDSS-II derived density fields as well as plan-view 
of LDAR source density at 9 km AGL. 

 
processes.  The few LDAR/LMA networks currently 
in existence provide localized coverage, so our 
dataset will include storms from various LDAR/LMA 
networks to investigate regional influences.  The 
LMA network in Sterling, VA is the focus of our 
research; however, we also examine storms within 
the Huntsville, AL and Kennedy Space Center, FL 
regions. 
 
The original WDSS-II derived IC lightning 
parameters include the source or flash density at 
specified levels (e.g., 1-20 km), the Vertically 
Integrated LMA (VILMA), the Maximum LMA density 
(MaxLMA), the Height of MaxLMA, and the LMA 
Layer Average.  These parameters describe both 
the amount and distribution of IC lightning, and allow 
us to take full advantage of the data’s fine temporal 
resolution (seconds).  An important consideration of 



our research is the value added by the vertical 
dimension of lightning data.   
 
Fig. 8a provides an example of the temporal 
resolution provided by LDAR/LMA data.  Each 
colored line indicates the vertical profile of the 
LDAR column at 1 min intervals during a single 
WSR-88D volume scan.  A snap shot of the data 
is shown in Fig. 8b.  The individual LDAR 
sources (white dots) are combined to create 
LDAR source densities (cross-section) at 1 km 
intervals from the surface to 20 km AGL.  
 
The GOES-R Global Lightning Mapper (GLM) 
will provide 2-D total lightning data at a 
resolution of approximately 10 km (Goodman et 
al. 2008). We are examining GLM proxy 
parameters obtained from LDAR/LMA data to 
provide risk reduction for the GLM.  We modify 
and combine NLDN and LDAR/LMA data within 
WDSS-II by employing data mining procedures 
described below.  Fuzzy logic techniques 
currently are being evaluated to develop new 
GLM proxy parameters.  These tools will assign 
weights to existing lightning variables in order to 
develop new proxy parameters.  The resulting 
products will exploit both the spatial and 
temporal (2-D) aspects of total lightning data.   
 
The GLM will provide total lightning data to all 
NWS WFOs for the first time.  Therefore, it is 
important to determine the suitability of GLM 
data in native form for assessing storm severity.  
These data will be used in conjunction with data 
from existing lightning detection networks and 
other remote sensing sources to develop new 
tools for NWS forecasters.        
 
WDSS-II contains an algorithm that uses 
Hierarchical K-Means clustering to identify and 
track mesoscale features as small as 10 km

2
 

(Lakshmanan and Smith 2008).  The original 
National Severe Storms Laboratory (NSSL) 
algorithm (w2segmotionll) clusters 2-D areas 
containing average composite reflectivity values 
greater than 30 dBz.  It then computes higher 
order parameters and employs a user-created 
decision tree to determine the type of storm (i.e., 
isolated supercell, line, pulse, or non-severe).  
These clusters, depicted in Fig. 9, are used to 
mine data from additional gridded fields (i.e.,  

 
 
Fig. 9 K-Means clusters for a) Scale 0 b) Scale 1 
and c) Scale 2 overlain on composite reflectivity.  
Scales result from user defined thresholds and are 
used to track changes in additional gridded fields 
along the storm’s path.  Scale 0 identifies the 
smallest features; scale 2 classifies only the largest 
or most coherent features; and scale 1 falls in 
between. 
 



 
 

Fig. 10 a) The locations of every cluster during 
each 1 min period for an 8 h analysis period b) 
Idealized cluster depicting a grid spacing of 1x1 
km. The data mining algorithm (w2segmotionll) 
tracks the average, count, maximum, minimum, 
and/or standard deviation of given parameters 
within the cluster. 

 
LMA and/or NLDN), that are stored in a final 
storm database.  We have modified this 
algorithm to cluster reflectivity based on various 
thresholds (e.g., 10 dBZ) and to compute higher 
order parameters along the storm’s path.  These 
higher order fields include the newly developed 
lightning parameters described previously. 
 
Figure 9 illustrates the “scale” issue when 
defining storms using the w2segmotionll 
algorithm.  The K-Means clusters are created at 
three different scales, can be based on any 
gridded field, and employ user-specified 
thresholds.  The w2segmotionll algorithm allows 
the user to determine the number of pixels 
comprising each cluster at each of the scales, as 
well as the parameter and thresholds to be 
used.  Scale 0 identifies the smallest features 
(Fig. 9a), scale 2 identifies only the largest or 
most coherent features (Fig. 9c), and scale 1 
(Fig. 9b) falls between.  It is very important to 
fine tune the K-Means options to ensure that 
individual storms are indeed separate from 
surrounding features.   
 
Basic grid operations (i.e., count, minimum, 
maximum, average, and standard deviation) can 
be applied to any parameter within the K-Means 
cluster.  Fig. 10 depicts an idealized example of 
how these calculations are made.  Each 1×1 km 
grid cell contains a value for all desired fields; 
these grid operations then are used to compute 
the desired parameters within each cluster (e.g., 
the average or maximum of all 1×1 km grid cells 

bounded by the cluster).  Additionally, the 
w2segmotionll algorithm allows the analyses of 
temporal trends (time delta), the computation of 
lifetime statistics (column operations), and fuzzy 
logic calculations.  Current applications for this 
algorithm, using the aforementioned lighting and 
radar fields, are described in the following section. 

 
4. Analysis 

 
Storms from many different geographic regions and 
atmospheric conditions must be examined to 
develop robust statistical relationships between 
lightning and radar parameters and storm intensity.  
To inspect the large number of storms that is 
needed, it is important to streamline the 
development and analysis of our database.  
Therefore, we are automating the procedures from 
database creation through the visualization of 
individual storms.  This allows us to minimize 
manual inspection and to transition away from the 
more typical case study mode.  However, in order to 
maximize accuracy, individual cases still are 
examined to physically and visually confirm the 
results. 
 
Figure 11 illustrates the combination of total lightning 
and radar data within an individual storm cell.  Mean 
and maximum reflectivities are plotted in Fig. 11a 
along with the average CG flash density and LDAR 
source density within a given layer.  These same 
fields are displayed visually in Fig. 11b.  The cross-
section depicts LDAR source density, while the plan 
view contains LDAR flash initiation points, CG flash 
locations, and the CG flash density.  The 
combination of these fields within an individual storm 
allows statistical relationships to be determined. 
 
Our procedures currently are automated from the 
retrieval of radar, RUC-derived, and lightning data 
through the output of individual storms.  The final 
step in this process will be developing storm query 
and display procedures.  We will determine the 
storm track and compute the average, maximum, 
and minimum distance from the LDAR/LMA network 
and the WSR-88D.  This will ensure that all data are 
consistent.  The storm query process also will 
consider storm duration, and allow us to define 
entire storms in addition to quickly developing 
features.  Based on user-defined attributes within 
the query program, each final storm folder from  



 
 
Fig. 11 a) Example of combining radar and 
lightning parameters computed during the life 
cycle of a storm (Mean and Maximum 
reflectivity, LDAR layer average source density, 
and cloud-to-ground flash density b) View 
slightly south of nadir, looking down on a cross-
section view of LDAR source density and a plan 
view of LDAR flash initiation points, CG flash 
locations, and CG flash density. 

 
a given analysis period will contain animations 
and plots illustrating the most significant storm 
features and events.       
 
Lang and Rutledge (2008) noted that modularity 
is key when interrogating large radar and 
lightning datasets.  This is our most desired 
attribute, and represents the foundation for our 
research.  Regional and seasonal variations in 
the correlation between lightning and radar 
require our scheme to be applicable to different 
geographical regions.  Also, our procedure must 
provide a framework for continuing 
improvement.  This will facilitate the 
incorporation of new technology (i.e., new data  
 

 
Fig. 12 Example of missing data, cell 133 tracked 
directly over the radar during peak lightning 
production a) Echo top at 18 dBZ (red), 30 dBZ 
(green), and 50 dBZ (blue) – Average Vertically 
Integrated LMA (VILMA), maximum VILMA, and the 
average height of maximum LDAR density b) Echo 
top at 18 dBZ (red), 30 dBZ (dark blue), and 50 dBZ 
(light blue) – Maximum CG flash density and 
average CG flash density. 

 
sources) and the inclusion of developing knowledge 
about storms.   
 
An example of the importance of modularity is 
depicted in Fig. 12.  Cell 133 tracked directly over 
the radar during peak lightning production.  This 
produced a lowering of radar defined echo tops 
when the opposite should be expected.  During that 
time, however, the average height of the maximum 
LDAR/LMA density is observed to shift upward.  To 
account for such occurrences, our guidance 
products will utilize the currently available 
parameters to make the most accurate 
determination of storm severity.  Thus, if a data 
source is missing, we will leverage the remaining 
sources to assist in the warning decision process.  



Naturally, the level of confidence will be affected 
and must be defined within the guidelines. 
 
As the final aspect in our research, linear 
regression will be used to derive physical 
relationships between lightning, radar, and storm 
severity.  Determining the optimum parameters 
is the first step.  Since the combination of 
possible parameters is virtually infinite, statistical 
analyses will be used to determine the best 
relationships and combinations of parameters.  
The selected parameters will be related to storm 
type to observe trends within the radar and 
lightning fields.  These relationships then will be 
used to observe and quantify the 3-D 
development of many severe and non-severe 
storms. 
 
Statistical analyses will help reduce the vast 
number of possible radar, lightning, and RUC 
parameters, and will be used to develop 
probabilistic forecasts of severity.  The inclusion 
of lightning data allows us to quantify storm 
severity at increasing distances from the radar.  
Quantifying the lightning patterns within severe 
and non-severe storms will provide forecasters 
with an additional tool to more accurately 
determine both the onset and severity of 
inclement weather. Used with traditional radar 
parameters, these statistical procedures seek to 
increase the warning lead time for severe 
weather events.   
 
5. Conclusions 
 
Utilizing the WDSS-II software, we seek to shift 
from the case study mode to develop a large 
database of storms which contains many radar-, 
lightning-, and RUC-derived parameters. This 
enhanced database will allow us to derive more 
robust storm-scale relationships between total 
lightning, radar, and storm severity.  Our focus is 
on the warning decision support process, and 
we hope to package the resulting algorithms and 
guidelines for use at all NWS WFOs.  
 
Our major goal is to help insure that the NWS is 
using current lightning resources to best 
advantage when assessing severe weather 
events.  Additionally, the GLM risk reduction 
component will help ensure that the NWS is  

prepared to utilize the upcoming total lightning data 
for determining severe weather potential. 
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