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Abstract

This paper describes the use of severe weather products derived from the
coterminous United States (CONUS) radar network, the lightning detection
network, GOES satellites, and model analysis fields to determine the
confidence-level of National Weather Service-issued tornado warnings.
Severe weather attributes such as low-level shear, reflectivity at -20C and
the size of the convective core were extracted (within the geographic and
temporal extent of the warning polygons) from the real-time grids produced
by the Warning Decision Support System -- Integrated Information (WDSS-
II). The initial values of these severe weather parameters at the time the
warning was issued were used to determine the conditional probability that a
tornado would occur within the spatial and temporal bounds of the warning.
Once a warning is issued, it is possible to use this conditional probability to
objectively assign a confidence value with the warning in real-time.

1. BACKGROUND

Tornadoes are among the costliest, least predictable atmospheric
phenomena, warnings for which had an average lead time of 13 minutes, in
2004 (Erickson, S. A., Brooks, H., 2006). Becoming better at forecasting
tornadic storms is not only essential to life and property, but could also
decrease the National Weather Service’s (NWS) false alarm ratio (FAR),
which has economic benefit as well (Erickson, S. A., Brooks, H., 2006). The
advent of Doppler radar has provided opportunities to better observe and
predict severe weather, via systems such as the National Severe Storms
Laboratory’s (NSSL) WDSS-II (Lakshmanan, et al 2006). WDSS-II derives
products in real-time for the diagnosis of severe weather that aids
forecasters in now-casting and warning for severe storms, in particular.

http://www.go2pdf.com


These products are derived from a multi-radar, multi-sensor CONUS merged
reflectivity radar network, model and lightning data, and GOES satellite
data. The objective of this paper is to investigate archived tornado warnings
using these products, and give probabilities to NWS warnings based on
different threshold values of the variables.

2. METHODOLOGY

Table – 1 WDSS-II products / storm attributes

Twenty-three products (see Table 1) were monitored during each
CONUS tornado warning for an unbiased selected 20 days (the same 20 days
for each product) from 2 May – 1 July 2008. After this first initial analysis
was performed, certain storm attributes were examined in relation to the
NWS CONUS tornado warnings from 2 May – 1 July. It should be noted that
for 3-6 km Azimuthal Shear (Az. shear), the warnings from 15 May – 2 July
were used, since WDSS-II was not processing this attribute before May 15.
Also, for 2 May – 10 May, 0-2km Az. shear was replaced with 0-3km Az.
shear, since 0-2km Az. shear data was absent from WDSS-II during this
time. Environmental data (e.g. CAPE, CIN) is calculated by the 20-km RUC
model, which is outputted every hour.

For each archived warning polygon, attribute maximum values inside
the warning were calculated for each minute of the warning (minimum
values were calculated for IR band-4 temperature, and LCL height). The
lifetime maximum (or minimum) for each attribute was also saved after each
minute, so by the end of each warning, initial values, lifetime maximums or
minimums, and the value at each minute, for each attribute, comprised the
dataset. Obviously, if there was no warning valid at a given time, no
statistics were produced. Finally, verification of the warnings was performed,
using the NWS Storm Prediction Center’s storm data, which are still
preliminary at the writing of this paper, but suffice for our purposes. Thus,
comparisons for verified versus unverified warnings can then be made.

Maximum Expected Size of
Hail (MESH)

Probability of Severe
Hail (POSH)

Severe Hail Index (SHI) Vertically Integrated
Liquid (VIL)

Height of 50dBZ over 253K Echo top of 18dBZ Echo top of 30 dBZ Echo top of 50 dBZ
Area of VIL > 30 kg/m2 0-2 km Azimuthal Shear 3-6 km Azimuthal Shear Lowest Level Reflectivity
Reflectivity at 0oC Reflectivity at -10oC Reflectivity at -20oC Maximum Reflectivity
Storm Relative Helicity 0-3km Storm Relative Flow

9-11km AGL
100mb Avg. CAPE 100mb Avg. CIN

LCL height IR band-4 temperature Environmental Shear Total of 23 products
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Distributions of initial values and lifetime maximum (or minimum)
values were produced for both verified and unverified warnings. The
summary of 0-2km Az. shear and vertically integrated liquid (VIL) are
presented in this paper. From 2 May – 1 July 2008, there were 1,617
tornado warnings, with an FAR=0.744 and the complement, frequency of
hits (FOH) = 0.256. The average warning duration was 38.6 minutes.

2a. 0-2 km Azimuthal Shear

There were 1,237 good warnings (without missing data) for 0-2km Az.
shear. Figures 1a) and 1b) show the distributions of initial 0-2km Az. shear
(first minute of the warning) for unverified and verified warnings,
respectively. Both distributions are skewed to the right, with the unverified
warnings skewed more so. This indicates that a large percentage of all
tornado warnings had rather weak 0-2km Az. shear. A student’s t-test was
performed, with unequal sample sizes and unequal variances. The null
hypothesis is that the mean initial 0-2km Az. shear for verified warnings is
equal to the mean initial 0-2km Az. shear for unverified warnings.

Let a subscript of 1 denote estimators for 0-2km Az. shear for verified
warnings, a subscript of 2 denote estimators for 0-2km Az. shear for
unverified warnings.

The test statistic is:

The variance used:

And degrees of freedom:

Using the t-test, we calculated a p-value of 5.23 x 10-11, which indicates that
the initial 0-2km Az. shear means are indeed significantly different for
verified and unverified tornado warnings.
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Fig. 1a) The distribution of initial 0-2km Az. shear for unverified warnings during the period 2 May -1 July 2008. Mean:
0.0053 s-1, standard deviation: 0.0044 s-1. Fig. 2a) The distribution of initial 0-2km Az. shear for verified warnings. Mean:
0.0078 s-1, standard deviation: 0.0053 s-1.

Figure 1a) Figure 1b)

Figure 2a) Figure 2b)

Fig. 2a) The distribution of lifetime maximum 0-2km Az. shear for unverified warnings during the period 2 May -1 July 2008.
Mean: 0.0078 s-1, standard deviation: 0.0051 s-1. Fig. 2b) The distribution of lifetime maximum 0-2km Az. shear for verified
warnings. Mean: 0.0109 s-1, standard deviation: 0.0055 s-1.
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Fig. 3 – A composite time series for 0-2km Az. shear for both verified and unverified warnings. Each time bin represents an
average of the five minutes prior to the bin.

Figures 2a) and 2b) display the distributions of the lifetime maximum 0-2km
Az. shear for unverified and verified warnings, respectively. Both sample
means increased, and the distribution for verified warnings appears bimodal,
with one mode just under 0.01 s-1, and the other just under 0.02 s-1. This
interesting feature could be a result of regional differences in storms
(perhaps one mode is for the southeast, and the other for the central
Plains), but was not investigated further.

Figure-3 presents a composite time-series of 0-2km Az. shear, for both
verified and unverified warnings, over the duration of the warnings. Each
bin represents a 5-minute average of the Az. shear, for the 5 minutes prior
to but not including the bin value (e.g., bin ‘5’ averages every minute of the
warning from initial issuance time to the 5th minute, but not including the 5th

minute.). One would expect that initially, the mean 0-2km Az. shear would
be about the same for both the verified and unverified warning samples,
since one would expect NWS forecasters to warn on approximately the same
value for this low-level rotation variable. However, this is not the case.
Forecasters are warning on a wide range of storms, with respect to 0-2km
Az. shear, as evidenced by the distribution in Figure 1b). While only a
fraction of the warnings that verified had weak (say < 0.004 s-1) 0-2km Az.
shear, i.e. the probability that a warning had 0-2km Az. shear < 0.004s-1,
given it verified is ~10%, forecasters are probably more concerned about
their probability of detection (POD) than their FAR. Therefore, they are
willing to take a chance and warn on storms with weaker rotation. But
logically, the warnings that contain storms with stronger low-level shear tend
to verify more, on average.
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Furthermore, from Figure-4, we can see the probability that a warning will
verify given a specific range of low-level Az. shear. One can see that the
worst probabilities (which happen to correspond to the majority of the
warnings issued) are for storms with weak initial shear, and as shear
increases, the probability that the warning will verify increases. It should be
noted that shear bins are inclusive on the lower bounds, and exclusive on
the upper bounds. One other interesting observation is that the probability
of verification jumps from around 30% to 45% at the 0.01 s-1 threshold,
indicating that a value of low-level shear as such may be a key step in
issuing a verifying warning. More warning data would help discern the
meaning of this jump. If indeed it is a probability jump, a longer climatology
of warnings would produce the same feature. If it is simply an artifact of the
sample taken, a longer climatology of warnings would most likely smooth
out this feature.

2b. Vertically Integrated Liquid

Using multi-radar, multi-sensor merged CONUS reflectivity data,
WDSS-II computed the one-minute maximum VIL for each minute of all
tornado warnings in the two month period. Again, values were calculated

Fig. 4 – The probability that a warning will verify, given an initial 0-2km Az. shear.
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Figure 5a) Figure 5b)

Figure 6a) Figure 6b)

Fig. 5a) The distribution of initial VIL for unverified warnings during the period 2 May – 1 July 2008. Mean: 27.76 kg/m2,
standard deviation: 20.46 kg/m2. Fig. 5b) The distribution of initial VIL for verified warnings. Mean: 34.44 kg/m2, standard
deviation: 18.66 kg/m2.

Fig. 6a) The distribution of lifetime maximum VIL for unverified warnings during the period 2 May – 1 July 2008. Mean:
37.00 kg/m2, standard deviation: 20.27 kg/m2. Fig. 6b) The distribution of lifetime maximum VIL for verified warnings.
Mean: 46.35 kg/m2, standard deviation: 18.05 kg/m2.
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Fig. 7 – A composite time series of Vertically Integrated Liquid (VIL) for both verified and unverified warnings. Each time bin
represents an average of the five minutes prior to the bin.

entirely inside NWS warning bounds. Figure-5a) displays the distribution of
initial VIL for unverified warnings, and figure-5b) shows the initial VIL
distribution for the verified warnings. One can see that warnings verified
with a wide distribution of initial VIL. Also, a large percentage of warnings
were issued with relatively low VIL, as evidenced by the right skewed-ness,
especially of the unverified warnings distribution. The mean initial VIL and
mean lifetime maximum VIL for the verified warnings are both substantially
greater (p-value on the order of 10-41) than those of the unverified warning
distributions. Figure-7 presents a full composite time series of VIL, averaged
over each five minutes of both verified and unverified warnings.

Again, it is rather surprising to see the initial VIL quite different for verified
and unverified warnings. Forecasters are warning on a wide range of
storms, with respect to VIL, and the storms that tend to verify, have more
intense VIL. The reason for such disparity could be that forecasters neglect
to use VIL as an indicator for severe storms, or simply, VIL just lacks
predictive value for tornadoes. However, the storms that forecasters take a
chance on (storms with lower VIL) tend not to verify as much, as evidenced
by the consistent lower mean for the unverified warnings time series.
Figure-8 quantifies how often a warning is verified, based solely on VIL. One
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can see that the probability of verification increases as VIL increases, except
for the last VIL bin, with VIL greater than 60 kg/m2. We attribute this to the
lack of storms with a VIL of that magnitude, or again, perhaps this is
another hint at VIL’s poor predictive capacity. It also is quite apparent that
the probabilities of verification for a given VIL are lower across the board
than those probabilities of the 0-2km Az. shear, again showing that the low-
level Az. shear is a much more effective univariate predictor than VIL.

3. COMPOSITE CONDITIONAL PROBABILITY

It is then possible to put these two products together, to create a conditional
probability contingency table, Table – 2. Each cell of the table represents
the probability that a tornado will verify, given an initial 0-2km Az. shear and
an initial VIL. Both variables were divided into four bins, to ensure a
sufficient amount of warnings in order compute a reasonable probability. It
is quite noticeable that as low-level Az. shear increases, the probability of
verification tends to increase. Conversely, there is no clear pattern with
respect to VIL in this bivariate contingency table. As indicated by the
distributions of initial 0-2km Az. shear and VIL (Figs. 1a, 1b, 5a, 5b), the cell

Fig. 8 – The probability that a warning will verify, given an initial VIL.
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that encloses both of the lowest bins (top leftmost cell) contains by far the
largest number of warnings, as well as one of the worst probabilities of
verification. A table as such helps a forecaster quantify his/her own
subjective confidence level on issuing a tornado warning. A forecaster could
also use a similar product to reduce his/her FAR, if so desired.

4. CONCLUSIONS

The main purpose of this paper was not to isolate the best WDSS-II
predictors for tornadoes, but to explain how WDSS-II products can quantify
confidence levels for now-casting purposes, namely for the NWS issuing
tornado warnings. WDSS-II can automatically assign the probability of
verification to a newly issued NWS warning, or even plot that probability, in
real-time. A longer climatology of tornado warnings will provide more
reliable probabilities of verification, as well as an opportunity to use more
than two WDSS-II products as predictors. The larger sample of warnings
will ensure that the extreme bins of the multi-dimensional table will be filled
with a sufficient number of warnings to calculate a reasonable probability.

Ver: 41

Unv: 238

PROB: 0.147

Ver: 10

Unv: 61

PROB: 0.141

Ver: 5

Unv: 34

PROB: 0.128

Ver: 5

Unv: 19

PROB: 0.208
Ver: 29

Unv: 70

PROB: 0.293

Ver: 32

Unv: 49

PROB: 0.395

Ver: 18

Unv: 42

PROB: 0.300

Ver: 24

Unv: 26

PROB: 0.480
Ver: 15

Unv: 41

PROB: 0.268

Ver: 23

Unv: 69

PROB: 0.250

Ver: 26

Unv: 35

PROB: 0.426

Ver: 25

Unv: 27

PROB: 0.481
Ver: 0

Unv: 14

PROB: 0.000

Ver: 9

Unv: 36

PROB: 0.200

Ver: 10

Unv: 15

PROB: 0.400

Ver: 8

Unv: 9

PROB: 0.471

Initial 0-2km Azimuthal Shear (s-1)

x < 0.004 0.004 <= x < 0.008 0.008 <= x < 0.012 x >= 0.012

Table – 2: Each cell in this conditional probability contingency table contains the number of verified and
unverified tornado warnings, as well as the probability of verification given the bin values of low-level
Az. shear and VIL. Only warnings that had non-missing initial low-level Az. shear and initial VIL (after
the 1st minute) were used; a total of 1065 warnings.
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Future work would include extending the sample of tornado warnings, and
isolating 3 or more of the best WDSS-II products to be used as predictors.
It is well known that the environment that a storm initiates in is a crucial
factor that forecasters consider when issuing warnings. For example,
environments with high instability, and a sufficient lifting mechanism may
compel forecasters to issue a warning on the first sight of storm initiation, in
which case the reflectivity, VIL, or azimuthal shear at the initial time of the
warning would not indicate a strong storm, but rather a storm with the
potential to quickly intensify. This could account for the sizeable amount of
warnings (both verified and unverified) that were issued by NWS forecasters.
Therefore, the environment, with respect to properties such as 0-1km
helicity, CAPE, CIN, and LCL height needs to be part of the equation when
quantifying forecast confidence. Future study should include a more
rigorous investigation of the warning environments. Ideally, several storm
environment parameters from the 20-km RUC model would be used to
support the WDSS-II radar-derived products when compiling the verification
probabilities. Occasionally a tornado warning does not entirely enclose a
storm, and consequently WDSS-II would not be processing data on the
whole storm. Therefore, another key improvement on this research would
be to examine the area just outside of a tornado warning, in order to ensure
that WDSS-II products are indeed extracting information from the whole
storm, and its environment.

A regional analysis of tornado warnings using WDSS-II would yield tables of
confidence levels for different geographical regions of the United States.
This type of future study would be especially important, since different
regions of the U.S. often have different variable thresholds for severe
storms. Another interesting application of this research would be a seasonal
comparison of warnings, for the warm and cold season storms, for the same
geographical regions. WDSS-II could produce new sets of probabilities for
both seasons, and they could then be contrasted to see if there is indeed a
difference between warm season storm attributes and cold season storm
attributes. Analyzing the difference in tornado warnings that were issued on
a storm after an initial warning, and the first warnings on a storm (warnings
issued on new convective initiation) could help indicate forecasters’ skill at
different stages of storm evolution.

A study of especial interest would be to evaluate the differences in storm
attributes in severe thunderstorm warnings and tornado warnings, using
WDSS-II products. Comparing the forecast confidence levels for both types
of warnings could allude to possible threshold values in WDSS-II products,
which could in turn help forecasters determine whether to issue a tornado
warning or a severe thunderstorm warning.
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When now-casting for a severe storm, or multiple threats, forecasters need
as much information as quickly as possible to help make the best decision, in
terms of issuing a warning or not. Using WDSS-II, a forecaster can get vital
storm attribute and environment conditions. If WDSS-II is equipped with
the probability of verification based on its products, then the forecaster will
also get an objective confidence level, which is a measure of certainty on a
particular storm, and another factor in the decision process of issuing a
warning.
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