
 1

8A.4 An Exercise in Extending AWIPS II

Jim Fluke*, J. Edwards* and X. Jing²
NOAA Earth System Research Laboratory (ESRL), Boulder, CO, USA

*Collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), Fort Collins,
CO, USA

2Collaboration with the Cooperative Institute for Research in Environmental Sciences (CIRES),
Boulder, CO, USA

1. INTRODUCTION

A modernized version of the Advanced
Weather Information Processing System
(AWIPS), is being developed by Raytheon.
This new version of AWIPS is officially
called AWIPS Migration but will be referred
to as AWIPS II in this paper. AWIPS II is
based on a Services Oriented Architecture
(SOA) that is modular, flexible and easily
extensible. AWIPS II, like the current
AWIPS, is comprised of two distinct parts, a
data server and a display. On AWIPS II,
these are the Environmental Data Exchange
system (EDEX) and the Common AWIPS
Visualization Environment (CAVE),
respectively. Functionality is added to
AWIPS II via plug-ins, and Raytheon has
provided Plug-in Creator tools that facilitate
this capability.

Over the past year or so, GSD and other
development organizations have been
working with the different versions of AWIPS
II to become familiar with the system. As
part of a training exercise, GSD wrote two
types of plug-ins: one to ingest data,
specifically an observation dataset from the
Meteorological Assimilation Data Ingest
System (MADIS); and another to display and
interact with various datasets. In this paper,
we discuss the steps necessary to generate
the plug-ins, the problems we encountered,
and some proposed solutions.

2. EDEX MADIS PLUG-IN

Creating an EDEX data ingest plug-in
requires generating both Java source files,

to decode the data, and a number of
configuration files that are used by EDEX to
determine how to run the Java code and
what do to with the result. To help with this,
Raytheon has developed an EDEX Plug-in
Creator that runs under Eclipse
(http://www.eclipse.org). It is intended to be
used to create the framework for a specific
EDEX plug-in that will ingest a specific type
of data. It creates stubs for all the Java
source files required for the plug-in, and
creates all of the needed configuration files.
As the first step in creating a MADIS ingest
plug-in, we used the Plug-in Creator to
create the starting framework. Then we
populated the Java stubs with code that
parses the XML formatted MADIS data. The
first attempts to build the plug-in showed
many errors. We determined that most of
them were caused by problems with the
configuration files. The same thing
happened in the first attempts to run the
plug-in. We were able to correct all of these
problems, but it took a large effort to track
them all down.

A report, written by James Fluke,
showing the detailed steps needed to create
the plug-in is on the web at: http://www-
sdd.fsl.noaa.gov/~fluke/noaa/MadisPlugin.ht
ml.

Figure 1 shows a small sample of XML
formatted MADIS data. We obtained it from
the MADIS web page at:
http://madis.noaa.gov/, using the
Text/XML Viewer (account required). On
the web page we specified the standard
surface variables and XML format.
 Corresponding author address: Jim Fluke,

NOAA/ESRL/GSD, R/GSD4, Boulder, CO
80305; email: James.Fluke@noaa.gov

 2

Although XML is not the format of the
MADIS data read off the Satellite Broadcast
Network (SBN), using it allowed us to learn
about XML parsing under Java as part of the
exercise.

Figure 2 shows the EDEX Plug-in
Creator with three of the MADIS fields filled
in. Note that the “Ipersistable” button is
unchecked. This is because the MADIS data
is only stored in the PostgreSQL database,
not in the Hierarchical Data Format 5
(HDF5) repository, as is consistent with all
the other types of point data. Also note that
the "Create Separator" button is unchecked.
This is because it makes more sense to
send XML data to a standard XML parser in
its entirety. It is pretty clear that anything
else would require more code and more
complicated code. Finally, the "Data URI"
check box is selected for all of the fields
shown so that all of them will be part of the
Uniform Resource Identifier (URI) for the
MADIS data.

The two Java files MadisRecord.java and
MadisDecoder.java were created by the
Plug-in Creator. MadisRecord.java was
nearly complete and needed only minor
changes. MadisDecoder.java was a stub,
as expected, and we had to write the code
for parsing the XML formatted MADIS data
and converting it to a list of MadisRecords.
We created an additional class,
MadisParser.java, to help with the parsing.

One problem we encountered was
determining what field types were valid. We
had to examine the Plug-in Generator code

to determine that only string, float, double,
and integer, or int (all case insensitive
except for int) are valid field types. Entering
an invalid field type and then selecting
"Generate Plug-in" will cause plug-in
generation to fail, but there is no error dialog
or log message to indicate why it failed.
Replacing the "Field Type" entry field with a
menu button in the generator dialog would
mitigate this problem. More informative log
messages would also be very useful.

Date/time types were not available, and
one was needed for the MADIS “ObTime”
field. To deal with this problem, we initially
specified the field as a String type, and then
we had to manually edit the configuration
files to change it to a Java Calendar type.
The Plug-in Creator should be extended to
include a date/time field type.

When we attempted to build and then run
the plug-in, other problems were
encountered that were more minor than
these, but that still took significant time and
effort to resolve. We specified these in the
TestTrack Report (TTR) written for the
MADIS plug-in problems - TTR 405. Again,
most of these were in the configuration files.
We found fixes for them by examining the
error messages and by comparing the
MADIS configuration files to those in the
existing plug-ins written by Raytheon.
Changing the MADIS files to be more
consistent with the Raytheon plug-ins
provided most of the fixes. It is clear that the
Plugin Creator could be fixed to populate the
files without these problems, and will need
to be if adding EDEX plug-ins is to be easy.

Figure 1: Sample of XML formatted MADIS data.

 3

Figure 2: The EDEX Plug-in Generator with some MADIS fields.

Figure 3 provides some evidence that the
plug-in actually works. It shows the
PostgreSQL MADIS data table as displayed

by the pgAdmin III tool after the sample data
shown in Figure 1 was ingested.

Figure 3: The contents of the MADIS database table as displayed by pgAdmin III

 4

Figure 4 shows that the AWIPS II Test
Driver web application can also be used to
display MADIS data records. We did this by
entering a customized script into the ASCII

Data tab’s Request/Response Message box,
as shown, and then clicking “Request
Product”

Figure 4: A MADIS data record displayed by the AWIPS II Test Driver web
application.

 5

3. CAVE PLUG-INS

Since CAVE is based on Eclipse, all
CAVE plug-ins take on the form of Eclipse
plug-ins. In fact, CAVE consists of a set of
Eclipse plug-ins. Extending CAVE requires
developing Eclipse plug-ins. The only
difference is that CAVE plug-ins should
usually make use of the CAVE extension
points rather than just the Eclipse
extensions points. All of our CAVE plug-ins
were developed in this way, including the
MADIS display plug-in.

The AbstractMapTool, IvisResource and

IgraphicsTarget are the basic extensions
points and graphics interfaces for display.
The menus can be configured in the
plugin.xml file of each plug-in.

Figure 5 shows the MADIS menu bar
button that we added to allow invocation of
the MADIS data display plug-in, and the
other CAVE plug-ins developed at GSD. In
this case it is being used to invoke the
Interactive Draw plug-in.

Figure 5: Invocation of the Interactive Draw plug-in using the added MADIS menu bar button.

 6

Figure 6 shows a plot of MADIS relative
humidity on a D-2D CAVE pane.

Figure 6: Plot of MADIS relative humidity (RH) data.

 7

Note that for the CAVE plug-ins we

manually created and populated the needed
files. This took significant time and effort.
There is an Eclipse plug-in creation tool, but
we found that it did not make creating the
plug-ins any easier.

Four concerns were discovered while
learning how to manually develop CAVE
plug-ins:

1) Writing plug-ins requires developing
an understanding of the several
layers that make up the architecture.
In addition to the CAVE GUI layer,
there is also the Eclipse Rich Client
Platform (RCP) layer, and under
that, the Java Standard Widget
Toolkit layer.

2) For developers who do not

understand AWIPS I, understanding
CAVE will be especially difficult.
Many complicated and hard-to-
maintain components of the AWIPS
I Interactive Graphics Capability
(IGC) are also in CAVE. This
includes depictables and much of
the basic IGC architecture.

3) CAVE developers must know about

the EDEX plug-in client interface
and data formats, and how to
communicate with EDEX in order to
write a CAVE plug-in. Whereas,
EDEX plug-in developers do not
need to know anything about writing
CAVE plug-ins.

4) For non-Java programmers, it will

take about six to 12 months training
to become efficient on AWIPS II
development.

We believe that a tool to allow CAVE

plug-ins to be created more automatically
would significantly mitigate these concerns.
A CAVE plug-in creator such as the one for
EDEX could be developed, and it would
make developing CAVE plug-ins much
easier.

4. CONCLUSION

In addition to the issues we mention
above, a major concern for AWIPS II
developers currently is the lack of sufficiently
in-depth documentation, both external and
in-line. Better documentation would also
make developing plug-ins much easer.
Raytheon has made it clear that more
documentation will be written after the basic
features have been completed.

Regardless of these issues we have

successfully shown that one can extend
AWIPS II by writing plug-ins. Our
experience has shown that with proper
training in the tools, and in-depth study of
the source code, one can write almost any
kind of plug-in to extend the functionality of
AWIPS II. We feel that as AWIPS II
continues to evolve, the process of adding
new functionality will be smoother.

5. ACKNOLGEMNTS

To Ann Reiser for her gracious help in
editing the paper; Carl Bullock, Woody
Roberts and Joe Wakefield for their helpful
critiques of the paper.

