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1. INTRODUCTION

The main challenges in predicting the weather 
are insufficient computational power and gaps in 
our understanding of the complex dynamics of 
atmospheric phenomena. There are 
comparatively straightforward solutions to these 
problems: enough teraflops, the right equations. 
But what happens when you have neither? This 
is the problem facing aviation turbulence
forecasters, who are charged with the task of 
predicting turbulent conditions that would affect 
aircraft, but who have neither the computational 
resources to predict it explicitly nor a complete
understanding of how to derive it accurately from 
available meteorological data. Yet, commercial 
and private aviation communities expect 
accurate, timely turbulence forecasts.

Pilots' ability to avoid turbulence during flight 
affects the safety of the millions of people who 
fly commercial airlines and other aircraft every 
year. Of all weather-related commercial aircraft 
incidents, 65% can be attributed to turbulence 
encounters, and major carriers estimate that 
they receive hundreds of injury claims and pay 
out “tens of millions" per year (Sharman et al, 
2006).  At upper levels, clear-air turbulence, or 
CAT, is particularly hard to avoid because it is 
invisible to traditional remote sensing 
techniques. In order to plan flight paths to avoid 
turbulence, air traffic controllers, airline flight 
dispatchers, and flight crews must know where 
CAT pockets are likely to be.

The turbulence forecasting difficulty is due to 
two main factors: (1) turbulent eddies at the 
scales that affect aircraft (~100m) are a 
microscale phenomenon and NWP models 
cannot resolve that scale, and (2) lack of 
objective observational turbulence data. The 
prior factor has been addressed during the past 
50 years, by assuming that most of the energy 
associated with turbulent eddies at aircraft 

scales cascades down from larger scales of 
atmospheric motion (Dutton and Panofsky 
(1970), Koshyk et al. (2001), Tung et al.(2003)). 
The turbulence forecast problem then becomes 
one of linking large-scale features resolvable by 
NWP models to the formation of aircraft-scale 
eddies. Numerous ‘rules of thumb' empirical 
linkages, termed turbulence diagnostics, were 
developed by the National Weather Service, 
airline meteorologists and academic 
researchers. The forecast skills of these 
diagnostics vary and diminish with lead time.

The imperfect nature of the current diagnostics 
leads forecasters to depend, at least partially, on 
available turbulence observations. Until recently, 
the only available observations were pilot 
reports (PIREPs), and they are the second 
factor contributing to the difficulty of turbulence 
forecasting (and forecast verification). PIREPs 
are sparse, aircraft-dependent, subjective 
reports by pilots of turbulence encountered 
during flight. Sharman et al. (2006) shows that 
PIREP inaccuracy is not as large as once 
thought (Schwartz, 1996), however, they remain 
a sparse and qualitative data source, and the 
distribution of reports is not representative of the 
state of the atmosphere because most non-
turbulent areas are not reported.

One major effort by the FAA’s Aviation Weather 
Research Program (AWRP), some major 
airlines, and the National Center for Atmospheric 
Research’s Research Applications Laboratory 
(NCAR/RAL) is the development of a better 
turbulence observation data source: in-situ data 
of eddy dissipation rate (EDR) (Cornman et al. 
1995, 2004). In this system, turbulence 
observations are recorded automatically every 
minute during cruise by on-board software. It 
addresses many of the faults of PIREPs: it is 
aircraft-independent, objective, less sparse, and 
is designed to be used quantitatively. 
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While the in-situ measurement and reporting 
system is still in its first and limited deployment, 
it is being incorporated already into the next 
release of NCAR/RAL’s CAT forecasting 
system, the Graphical Turbulence Guidance 
System (GTG).  However, the GTG algorithm 
was developed using PIREPs, and thus is 
designed to make the most of sparse and 
subjective observational data. Not surprisingly, 
simply adding in-situ data into the current 
algorithm results in a real but modest 
improvement in forecasting accuracy (Kay et al. 
2006). The author believes that in order to fully 
exploit the potential of in-situ data, a new 
approach or forecasting algorithm is needed.

The specific goal of this project is to intelligently 
use in-situ data to improve turbulence 
forecasting accuracy. Plentiful in-situ data 
enables region-specific diagnostic selection and 
machine learning techniques for forecasting. In 
this paper, I present a method using random 
forests for determining climatologically-relevant 
forecasting regions, and explain the 
development and initial results from my 
Forecasting System Testbed (FST) for 
prototyping regionalized turbulence forecasting 
systems.

2. IN-SITU DATA

In-situ turbulence measurements are data 
recorded by special software on commercial 
aircraft during flight. This measurement and 
reporting system was developed at NCAR under 
FAA sponsorship in order to augment or replace 
PIREPs with a data source that has more 
precise location and intensity data. In-situ 
measurements use existing aircraft equipment 
and are reported using existing communications 
networks. Detailed coverage of in-situ data 
methods can be found in Cornman et al. (1995, 
2004).

The in-situ-derived turbulence metric is the eddy 
dissipation rate (EDR), 1/ 3ε . EDR is recognized 
as an objective measure of atmospheric 
turbulence intensity (Panofsky and Dutton, 
1983). Two methods to estimate 1/ 3ε onboard 
aircraft were developed: the accelerometer-
based method and the vertical wind-based 
method. Both are aircraft-independent 
measurements, and both result in approximately 
the same turbulence measurements.

Currently, the accelerometer-based method is 
used by United Airlines in 101 737s and 89 
757s. Southwest Airlines and Delta Airlines are 
scheduled to use the wind-based method when 
the system is deployed in their aircraft, which is 
currently under way.

EDR data is reported once a minute except 
during takeoff and landing, when data is 
reported more frequently depending on rate of 
altitude change. Each in-situ data report is a 
location (latitude, longitude, and altitude) and a 
set of statistics about various turbulence levels 
calculated from a number of EDR 
measurements taken onboard during that 
minute. 

The set of statistics are the median eddy 
dissipation rate (medEDR) and the maximum 
eddy dissipation rate (maxEDR). Reporting just 
these two fields reduces transmission costs 
while still providing a way to distinguish between 
discrete and continuous turbulence events. The 
medEDR is the median value of a time series. 
The maxEDR value is the 95% value of the time 
series; as a protection measure against 
erroneous data, peak values are not used.

Figure 1. Taken from Sharman et al. (2006). 
This figure shows the probability distribution 
function (PDF) of three months of observed EDR 
values ( 1/ 3ε ) in each in-situ bin, both median 
(lower bar) and 95th percentile (upper bar). The 
open circles are estimates of the true lognormal 
distribution of turbulence based on the RUC20 
model (Frehlich & Sharman 2004). The fact that 
observed EDR distribution differs from the 
estimated distribution may reflect the ability of 
commercial air carriers to avoid some turbulence 
during flight.



Due to transmission costs, both values are 
binned into 1 of 8 bins, and each possible pair of 
maxEDR/minEDR values for a minute is 
mapped to a single 8-bit character and then 
downloaded to the ground. The number of bins 
was limited by the available character sets, but a 
newer version of the algorithm now in 
development compresses the EDR data to 
enable more bins and thus a higher resolution of 
data. Figure 2 shows the geographic distribution 
of available in-situ data over winter 2005-2006, 
which is virtually identical to distribution in 
winters of 2006-2007 and 2007-2008 used in 
this study.

In-situ data provides a better representation of 
turbulence statistics in the atmosphere (Dutton 
(1980), Sharman et al. (2006)). Figure 1 shows 
that over 99% of in-situ reports are reports of 
null turbulence. If this distribution is 
representative, at any time at most 0.01% of the 
atmosphere at upper levels should contain MOG 
turbulence. In contrast, about half of PIREPs 
report null turbulence, 27% report light, 17% 
report moderate and 1% report severe; thus, 
pilots substantially underreport the null events. 
In-situ data overcomes this uncertainty by 
reporting data every minute during flight.
 

 
Figure 2. Geographic distribution of the in-situ 
data used in this study. 
The effort to understand in-situ intensity values 
relative to PIREP intensities is ongoing. 
We defined MOG turbulence as 0.35 – 4th in-situ 
bin - or higher. This is based on the PIREP and 

in-situ data comparisons (Abernethy, 2008), and 
that GTG considers a PIREP of intensity 3 or 
higher to be MOG.  

3. CLEAR-AIR TURBULENCE DIAGNOSTICS

A clear-air turbulence diagnostic is a simple 
turbulence model (equation) derived from 
qualitative expert knowledge based on 
experience or from basic physical principles. 
Through the years when forecasts were done 
manually, forecasters developed “rules of 
thumb'' about what atmospheric conditions 
typically indicate turbulence. These rules of 
thumb were an attempt to link the large-scale 
meteorological data that was available and the 
micro-scale CAT that was the subject of the 
forecast (Hopkins, 1977). Forecasters later 
quantified these rules, creating CAT diagnostics. 
For instance, a major cause of CAT is thought to 
be the Kelvin-Helmholtz instability (Dutton and 
Panofsky, 1970). This typically happens in areas 
of strong vertical shear and low local Richardson 
number (Ri, the ratio of static stability and wind 
shear). Thus many qualitative CAT diagnostics 
concern shears and Ri.  There are many 
different diagnostics linking a large-scale 
condition to small-scale turbulence. Their 
predictive powers vary, depending upon the 
large-scale condition that each represents and 
how directly it is linked to turbulence. There are 
forty CAT diagnostics; the diagnostics cited in 
this paper are detailed in (Sharman et al. 2006).

Forecasters use these diagnostics by mapping 
their values to different turbulence severity 
levels. In this way, forecasters took their 
qualitative knowledge about large-scale 
atmospheric conditions and their relationship to 
small-scale turbulence, quantified it in the form 
of diagnostic equations, then interpreted the 
results using thresholds to produce a qualitative 
forecast. The GTG forecasting system does 
exactly the same thing. Its developers used 
several years' worth of PIREPs to develop 
threshold values for each diagnostic that map to 
different levels of PIREP turbulence severity. 
Using fuzzy logic, GTG weights the diagnostics 
dynamically depending on their recent 
agreement with PIREPs, and the weighted 
values are combined to produce a turbulence 
forecast (Sharman et al. 2006). 
While diagnostics are valuable indicators of 
atmospheric conditions conducive to turbulence 
and will continue to be integral inputs into future 
forecasting systems, the aim is to avoid the 



hand-on human costs of determining thresholds. 
Machine learning techniques can aid in this goal.

4. TECHNIQUES, METRICS AND DATA

Further details, background, and work related to 
what is presented in this paper can be found in 
Abernethy (2008), but the aspects relevant to 
my regionalization work are summarized here.

4.1 Machine Learning Techniques

In this paper, I cover work using Support Vector 
Machines (SVMs) and random forests. SVMs 
are large-margin classifiers. Background on the 
technique of Support Vector Machines can be 
found in Hsu et al. (2003). For implementation of 
the SVM, I use the LibSVM library (Chang and 
Lin, 2003). I used LibSVM’s probabilistic output 
as turbulence intensities on a scale of (0,1) in 
order to compare to deterministic forecasts of 
the current GTG algorithm and produce ROC 
curves. 

Random forests are a collection of many 
decision trees trained by bootstrapping 
(sampling with replacement) from the training 
data set  (Brieman, 2001). The final forest 
classification is a majority vote from the 
constituent trees' classifications. The variations 
between the trees enables the random forest to 
avoid overfitting. Random forests do not require 
cross-validation or a separate test set to get an 
accuracy estimate; estimates are made using 
the portion of the training data set that was not 
used in forming the tree, called the out-of-bag 
(o.o.b) data. Random forests also have implicit 
feature selection, which I cover in the section 
below. I use the PARF (Parallel Random Forest) 
implementation (Topic, 2004).

4.2 Performance Metrics

I followed the verification practices of Takacs et 
al. (2005), which include the Receiver Operating 
Characteristic (ROC) curve and area under the 
curve (AUC) (Marzban 2004), and True Skill 
Score (TSS), because these are the metrics by 
which our forecasting product will be measured 
when deployed operationally.  I also use the raw 
importance score output from the PARF random 
forest implementation to assess individual 
diagnostic performance.

Recall from Section 2 that both PIREPs and 
binned in-situ data have eight intensity levels 

and that we currently consider an in-situ bin 4 to 
be most similar in intensity to a ‘moderate’ pilot 
report. Bin 4 defines the moderate or greater 
(MOG) threshold, with values below bin 4 part of 
the class of less than moderate (LTM) 
observations. A ROC curve measures how well 
an algorithm discriminates between two classes 
such as MOG and LTM. To construct the curve, 
we vary the threshold that separates these two 
intensity classes over a (scaled) range of 0 to 1 
and measure the discrimination accuracy at 
each threshold. Two numbers are used to 
capture this: PODY, “probability of detecting a 
yes” (forecast made a correct positive (MOG) 
prediction), and PODN, which corresponds to a 
correct negative (LTM) prediction. Higher PODY/
PODN combinations over the range of 
thresholds implies greater classification 
accuracy, so the AUC is a useful single-number 
metric for forecast accuracy. The TSS considers 
PODY and PODN at one threshold (such as bin 
4) : TSS = PODY + PODN – 1. Both AUC and 
TSS closer to 1 indicate higher forecasting 
accuracy. 

The raw importance score is a measure of the 
effect of a certain diagnostic on the random 
forest trees' final votes. Specifically, a 
diagnostic's values are permuted, then run 
through the trees in the forest for which that 
training example was out-of-bag, and each tree's 
category vote is recorded. When this has been 
done for all training examples, the votes are 
compared to the original votes (when the 
diagnostic's values were not permuted); the 
average of these differences over all the trees is 
the raw importance score for that diagnostic. 
The diagnostic with the highest raw-importance 
value is said to be the most important 
diagnostic. Likewise, sets of most important 
diagnostics can be made by ranking the 
diagnostics by raw importance score and taking 
the top n diagnostics. This variable importance 
can be thought of as a feature selection 
approach.

4.3 Data
This study used data from winter 2006-2007 
(October – March), and 2007-2008 (November – 
February), since there are more CAT events 
during winter (Sharman et al.,2000). The 
National Center for Environmental Prediction’s 
Rapid Update Cycle model at 13km resolution 
(RUC13) provided the environmental data to 
calculate 40 CAT diagnostics at every grid point 
(Sharman et al., 2006). Diagnostics were 



calculated for several daytime hours at analysis 
time (zero-hour forecast) and the six-hour 
forecasts.  Diagnostics were matched by 
location and hour on the RUC13 grid to PIREP 
and in-situ data. Only the highest intensity 
observation in a grid box was used. Thus, one 
observation was matched to 40 diagnostics at a 
grid point. Only data at FL200 (20000ft) and 
higher were included, since the in-situ data was 
only available at these heights. 

5. CLIMATOLOGICALLY-RELEVANT 
REGIONALIZATION

The physics of turbulence strongly suggests that 
specializing forecasts to smaller regions can 
take advantage of spatial and temporal 
differences in CAT climatology. In this section, I 
describe how I partitioned the domain (CONUS) 
into regions in a climatologically-relevant way. I 
did this by creating many overlapping, circular 
regions, and used the random forest algorithm 
and TSS to determine which diagnostics 
performed well in each region. By grouping 
neighboring regions according to their

Figure 3.  (top) Schematic of the point-centered 
region approach. (bottom) Schematic showing 
that regions are cylindrical and overlap. Adjacent 
regions can have different most important 
diagnostics (indicated by color).

top-performing diagnostics, I created larger 
areas of diagnostic similarity. The smaller 
regions, and the overlaps between them, 

allowed me to see more precisely where -- 
geographically -- the forecast power of different 
diagnostics increased or decreased between 
adjacent regions, defining more organic region 
boundaries. A regional forecasting algorithm that 
focuses on these individual regions can model 
the specific mechanisms per region, thereby 
increasing forecasting accuracy.

This point-centered region approach formed 
many more, smaller, regions with significant 
overlaps. I trained a random forest model on 
each region. Best-performing diagnostics for 
each region were the highest-ranked by raw 
importance score from the model.  I determined 
the best-performing diagnostic for each grid 
point by tallying the best-performing diagnostics 
of all the regions in which the point was a 
member. However, sometimes all the member 
regions did not have the same most important 
diagnostic; these disagreements were rectified 
most simply by taking a majority “vote" of the 
regions' most important diagnostics As the 
algorithm moved point by point across the grid, I 
could see where the best-performing diagnostics 
changed.  I defined the boundary lines where 
adjacent regions have different most-important 
diagnostics, which indicates the geographic 
location where a diagnostic's forecast accuracy 
starts to drop, or another diagnostic's forecast 
accuracy rises. Regions formed by these 
boundary lines presumably encompass areas 
that have similar mechanisms of turbulence 
creation.

I centered regions around every even latitude 
and longitude points over the CONUS domain 
(i.e., 100.0 W, 45.0 N), resulting in 440 regions 
covering the majority of the U.S. landmass 
between (121W,45N) and (75W,36N). A 
schematic of the region-creation process is 
shown in Figure 3. For clarity, the figure shows 
only a sample of the region centerpoints. The 
horizontal and vertical lines roughly represent 
latitude and longitude lines, respectively.
Example region centerpoints are represented by 
small dots along the schematic latitude and 
longitude lines in the figure. I formed each 
region by moving the region boundary radially 
out from the centerpoint, until the region 
encompassed a sufficient amount of data to train 
a random forest model. The figure shows two 
examples of this step-wise radial boundary 
growth, represented as “bulls-eyes”.



 I balanced the desire for small region size with 
the need for sufficient training data. Based on a 
sensitivity study Abernethy (2008) evaluating the 
accuracy effect of data amount, class 
distribution and number of trees, I found that 800 
MOG observations (and therefore many more 
than 800 null observations), 500 trees, and 
several class distributions produced stable 
classifiers for this data. This meant I could keep 
regions around 400km in diameter. The training 
set, initially consisting of all the data located 
within each region's boundary, was rebalanced 
to be composed of 40% MOG and 60% null 
observations.  All diagnostics were included in 
the training data. In the work presented here, I 
did not regionalize by altitude; thus, regions 
were essentially cylinders, as shown in Figure 3. 
Each region included data from 20000ft to 
45000ft.

Results are shown in Figure 4. The top figure 
shows the regionalization using the one top 
diagnostic for each grid point, and the bottom 
figure shows the regionalization when looking at 
the set of two top diagnostics. The bottom figure 
further breaks down regions in the top figure, 
showing greater regional variation.  In the east, 
the bottom figure shows the variation in 
mechanisms of turbulence secondary to 
saturated Ri.

6.  A REGIONALIZED FORECASTING  
SYSTEM TESTBED: FST

Different metrics, data types, and number of 
diagnostics give different regionalization results 
(Abernethy, 2008). Since the aim of this project 
is to improve CAT forecasting accuracy, I 
needed to compare the forecasting accuracies 
of different regional divisions with different 
forecasting algorithms.To do these comparisons 
quickly and easily, I built a software system, 
called the Forecasting System TestBed (FST), 
that automates the steps of regional division, 
diagnostic set choice, algorithm training, and 
forecasting verification. (Diagnostic or feature 
set selection methods are covered in detail in 
Abernethy (2008)). FST takes a specific 
regionalization scheme such as one from Figure 
4 and creates a forecasting model for each 
region based on region-specific diagnostics, and 
uses those models to produce CONUS-wide 
turbulence forecasts. The ability to easily test 
many regionalization and algorithm scenarios 
will enable systematic and rapid development of 
a final operational forecasting product.
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Figure 4. (top) Regions found using single top 
diagnostic measured by raw importance score. 
(bottom) Regions found using two top 
diagnostics measured by raw importance score. 
Each color represents a different diagnostic, or 
set of diagnostics.

FST divides the training, testing and validation 
data input by the user into regional data sets 
according to the geographic regions specified by 
the chosen regionalization scheme. The user 
specifies which forecasting algorithm to use: 
SVM, logistic regression, or random forests. 
Recall that to tailor a diagnostic set to a 
particular algorithm for forecasting, the algorithm 
also plays the role of the induction algorithm in 
the feature subset selection search.  When 
using SVMs or logistic regression as the 
forecasting algorithm, FST executes a feature 
subset selection search on the training data 
within each region, and the test data set is used 
to assess performance of the trained model at 
each search step. The random forest algorithm, 
as before, builds decision trees using the 
diagnostics that produce the best split of the 



data, and it outputs a list of those most important 
diagnostics. Thus no feature selection search 
was needed when the system used random 
forests as the forecasting algorithm; region-
specific diagnostic subsets were taken from the 
output lists for the region model. Note that since 
no search is involved, a separate test set is not 
needed, and the training and test sets can be 
combined into one larger training set. 

For each region, FST takes the diagnostic 
subset determined by the search (if using SVM 
or logistic regression) and uses that set to train a 
forecasting model with data from that region. 
The forecasting model can be an SVM, a logistic 
regression model, or a random forest, as 
specified by the user. In the case of a random 
forest model, an initial model is trained with all 
the possible diagnostics, and a set of the most 
important diagnostics is chosen from the output 
list. A new random forest model is then trained 
using only that set of diagnostics.

FST determines the accuracy of each region's 
forecasting model using the validation data for 
that region. FST calculates TSS as well as AUC 
for each region, and calculates these metrics 
CONUS-wide as well. The user is able to easily 
determine the skill of the regionalization scheme 
by looking at the regional and overall metrics 
output by FST.

Method Region Diagnostic 
Subset Size

AUC TSS

RF (I,P) 1 17 0.78 0.41
RF (I,P) 2 22 0.81 0.47
RF (I,P) 3 23 0.84 0.51
RF (I,P) 4 20 0.84 0.52
RF (I,P) 5 14 0.81 0.37

Overall: 0.833 0.50
SVM (I) 2 4 0.86 0.55
SVM (I) 3 4 0.84 0.53

Overall: 0.848 0.54
RF (I) 2 12 0.88 0.61
RF (I) 3 13 0.89 0.61

Overall: 0.885 0.61
Table 1. FST results for three trials: random 
forest forecasting algorithms using both in-situ 
and PIREP data (RF (I,P)), SVM forecasting 
algorithms using only in-situ data (SVM (I)), and 
random forest algorithms using only in-situ data 
(RF (I)).

My first trial with FST used the regionalization 
scheme shown in Figure 4 (top) with random 

forests for the forecasting algorithm for each 
region, using both PIREPs and in-situ data. My 
second and third trials with FST used same 
regionalization scheme, with SVMs and random 
forests as the forecasting algorithms. I used only 
in-situ data for these trials, for both winters 
2006-7 and 2007-8. The AUC and TSS results 
are in Table 1. In all trials, I did not have enough 
data in some regions to train a stable model; the 
table shows that with both PIREPs and in-situ 
data, I could train models in 5 of the 8 regions, 
but with in-situ data alone, only two of the 
regions had over 100 MOG observations -- a 
very liberal minimum I set based on my random 
forest sensitivity studies (Abernethy, 2008).
 
The first trial produced higher forecasting 
accuracies than its non-regionalized 
counterparts (Abernethy, 2008). The first trial, 
using random forests with PIREP and in-situ 
data, had an overall AUC of 0.833 and TSS of 
0.50, whereas no algorithm in had a 6-hour 
forecast AUC higher than 0.79; GTG 6-hour 
forecast AUC was 0.79, with TSS = 0.39. The 
second trial, using SVMs and in-situ data only, 
unfortunately produced an overall AUC of 0.848, 
which was lower than the corresponding 
CONUS-wide models. However, the third trial, 
which used random forests instead of SVMs, did 
improve forecasting performance; the AUC was 
0.885 compared to a range of 0.82-0.87 for 
CONUS-wide models. It is probable that there 
were not enough MOG examples in the two 
regions for SVMs to achieve high skill as 
compared to the full data set used in CONUS-
wide models, however, it appears that the 
random forest algorithm can still perform with 
small amounts of data.

7. CONCLUSION

Results in this paper show strong promise for 
the regionalization approach to turbulence 
forecasting. FST will continue to be used to 
refine the combination of geographic forecasting 
regions, turbulence diagnostics used, and 
forecasting algorithms for future versions of 
operational turbulence forecasting products.
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