Understanding Ionospheric Effects for the LWA

Christopher Watts¹ with K. F. Dymond², Aaron Cohen², M. Kuniyoshi¹ and the LWA Team

1) University of New Mexico, Albuquerque, NM; 2) Naval Research Laboratory, Washington, DC; 3) Los Alamos National Laboratory, Santa Fe, NM

Long Wavelength Array

The LWA is an effort to advance radio astronomy and ionospheric physics by using inexpensive dipole antennas to build a very large aperture radio telescope to probe the universe at the lowest frequencies that penetrate the Earth's ionosphere.

- Frequency range 20-80 (12-88) MHz
 - One of the most poorly explored regions of the electromagnetic spectrum
- Large collecting area
 - Approaching 1 square kilometer at its lowest frequencies
 - Interferometric baselines up to at least 400 km

The galaxy Cassiopeia A mapped @ 74 MHz using the VLA in A configuration and VLA + Pie Town (making a much larger array), demonstrating increased resolution

Learn more about the LWA project:

From Clark Lake to the Long Wavelength Array: Bill Erickson's Radio Science [ASP Conference Series, Vol. 345] Iwa.unm.edu

Space Weather Motivation for the LWA

- Ionospheric physics on fine spatial and temporal scales
 - Waves and turbulence
 - Coupling of ionosphere & neutral atmosphere
- Improvement of global data assimilation models
- Reliability of GPS & communications systems
- Space weather predictive capability for "events"
- The LWA is funded through the ONR
 - Ionospheric microstructure affects a wide variety of operations:
 - Communications
 - Navigation
 - Geolocation
 - Satellite operations

LWA: Far larger than the VLA

LWA Station (256 antennas)

100 m

Each LWA station has a Collecting Area of >10 × Single VLA Dish (at 74 MHz)

Central Array Overview

Core ~15 Stations

Ionosphere Opportunity using LWA

Ionosphere severely limits resolution & • see different ionospheric sensitivity phase and gain - Spatial and temporal variations in the ionosphere lonosphere across each station beam distort the image - Large area means different stations view different Station beam field of view ionosphere The solution of these ionospheric problems • presents an opportunity for ionospheric science Full array aperture Each station sees a different direction-dependent blur. Ionosphere Station 1 Station M

B Jeffs

Objects in field of view

Ionospheric Phase Measurement

- Radio telescope arrays (e.g. the VLA) are extremely sensitive to ΔTEC
 - Current VLA has \triangle TEC precision $\leq 10^{-3}$ TECU at 74 MHz [1 TECU = $\int n_e dl \sim 10^{16} m^{-2}$]
 - VLA probes ΔTEC variations to ~100 m, ~1 min, over 20° field of view

 Δ phase over VLA

LWA Calibration Strategy

- Rapidly cycle 1 synthesized beam among known bright sources
 - Other beams can observe astro sources of interest
- ~ 100 calibrator sources visible @ any time
 - Sources isolated, so only one in ${\sim}3^\circ$ beam
 - Source brightness dominates beam intensity
- Phase difference within 8MHz band can give absolute TEC
- Yields >5000 chords through ionosphere over ~75,000 km² area
 - Compare to GPS, ~10 chords/receiver -> 500 receivers
 - GEONET has 1200 receivers over Japan (same area)
- Required cycle period estimated to be 10s

Supplemental Ionospheric Correction

- High density GPS receiver network near each LWA station
 - Multiple pierce points for high resolution TEC measurements
 - Use other beacon satellites, too
- Passive "radar" from RFI sources
 - FM and TV stations
- Self-calibration methods (proposed by other radio telescopes LOFAR, MWA)
 - Peeling algorithm: successive calibration on brightest source
 - Direct least-squares: using all bright sources
- Ionospheric Modeling
 - GAIM & IDA3D incorporate data

Stippling due to poor ionospheric correction

Ultimate goal: $\Delta t \sim 10 \text{ ms}$, 10 m resolution

The CRICkET Project with the VLA

- CRICKET (Combined Radio Interferometry and COSMIC Experiment in Tomography):
 - Develop 3D ionosphere reconstruction tools with radio telescope & satellite beacons
 - Use Very Large Array (VLA) as surrogate for LWA
- VLA detects astro source at 74MHz
 - Extremely sensitive to changes in ionospheric electron content (ΔTEC)
- COSMIC can study the ionosphere using
 - GOX: GPS occultation
 - TIP: UV photometer
 - TBB: Tri-band radio beacon
- Tri-band receiver detects many radio beacon satellites
 - Sensitive to TEC (like GPS)

Initial Analysis of CRICkET

• Ionosphere density profile derived from TIP and GOX (cut @ 90°W)

- VLA and the TIP data show evidence of the TID wavepacket
 - Rare type consisting of a pair of waves
 - Localized over Texas; traveling south-southwest
- Analysis Parameters:
 - Wave 1:
 - Amplitude: 1.6±0.02 TECU
 - Wavelength: 205.6±2.0 km
 - Peak Location: 378.3±6.6 km
 - FWHM: 382.2±11.6 km
 - Wave 2:
 - Amplitude: 3.4±0.1 TECU
 - Wavelength: 170.4±1.4 km
 - Peak Location: 172.6±1.4 km
 - FWHM: 280.0±5.2 km

Modeling Ionospheric Effects on VLA

- TEC data used to predict position deviation seen by VLA
 - Work at ARL by Munton, et al.
- IDA3D used to reconstruct ionosphere
 - Assimilative model incorporates data from GPS, GPS occultation (GOX), over-satellite electron content (OSEC)
- Use ray tracing through ionosphere to obtain position of shift of astro sources
- Compare with known positions
 - Model does a reasonable job of predicting deviations. (<1/3° maximum deviation)
 - Daytime and low elevation sources show poorer predictability
 - VLA data can potentially "correct" the model

IDA3D TEC UT0100

Modeling Ionosphere's Effect on LWA

Lower frequency -> More severe effects

- Use ray tracing code to understand ionosphere effect on beam pattern
 - Cold plasma model with magnetic field
 - Refractive and Faraday rotation effects

Initial code check: simple laminar ionosphere

- No effect on Station beam pattern
- Note: ray @ 10MHz travels
 ~300 km horizontally
- Nonuniformities & curvature will cause significant distortion
- 2D "phase screen" won't work

• Add TID

- Parameter mimic VLA measurements at 74 MHz
- Significant beam deviation and distortion
- ± 1° shift in beam direction (worst case)
- Beam asymmetry depending on wave phase

LWA Ionospheric Research Contributions

- LWA will provide unprecedented spatial & temporal ionospheric data
 - ΔTEC Measurements with extraordinary accuracy
 - Electron density 0.0003-0.003 TECU (Angular resolution/point accuracy)
 - Temporal resolution $\Delta t \sim 1$ msec
 - B along path ~ 1% (Faraday rotation (1°))
 - Spatial resolution comparable to highest density GPS networks
 - Continuous monitoring (not limited to night)
- Science contributions
 - Fine scale structure
 - Coupling of neutral atmosphere & ionosphere
 - Wave formation & attenuation
 - Evening collapse of F-region
 & onset of depletions & enhancements (bubbles)
 - Ionospheric response during solar
 & geomagnetic storms

Jicamarca high resolution image

Summary

- Astronomy's obstacle is ionospheric science's opportunity
- Success will require multifaceted approach
 - LWA self-calibration using astrophysical emitters
 - GPS and related instrumentation
 - LWA use of coherent and incoherent sources (FM, scatter radar)

Topside

- Modeling

Transit

Tomograpi

Multiple sensor input to modeling

Astronomers and ionospheric physicists must work closely together from the start

More input from ionospheric community needed!

GAIM dynamic TEC model

0