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ABSTRACT

The paper evaluates two kernel-based methods on the problem of predicting precipitation

based on observable variables. The support vector machine (SVM) method finds the two

parallel hyperplanes that provide maximal separation of two subsets, excepting outliers. The

minimax probability machine (MPM) method finds an optimal separating hyperplane that

minimizes the probability of misclassification.

Both SVM and MPM are binary classification methods that can be extended easily to

multiclass problems. Both make use of the “kernel trick” to transform a linearly inseparable

problem into a higher dimensional space where the problem may be linearly separable.

The paper also investigates the accuracy and Peirce Skill Score (PSS, also known as the

Hanssen and Kuipers discriminant) measures resulting from adding derived variables and

removing variables. Using cross validation on the training data the accuracy was 70% and

PSS 47%. On the final testing data the PSS was 35%.
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1. Introduction

The 2008 AMS AI Data Mining Competition (AMS 2008) provided a training set of

847 examples containing 15 independent variables plus an observed result. The testing set

contained 363 examples, without the observed result.

The 15 independent variables are shown in Table 1. The dependent variable was “pre-

cipitation type” and had three possible values: “none”, “frozen”, and “liquid”.

The remainder of this paper provides sections: 2: Theory overview, 3: Method, 4:

Results, 5: Conclusion

2. Theory overview

a. Classification Problems

Consider a set of observations, the training data, S = {(xi, yi), i = 1, . . . , n} where

xi ∈ Rm and yi ∈ Y ⊆ N. Let Sk be the set of observations drawn from distribution

Fk, k = 1, . . . , K.

In the binary classification problem K = 2 and Y = {−1, 1}; in the multiclass problem

K > 2 and Y ⊆ N.

We want to find the decision function f : Rm → Y that minimizes a loss function such

as L(f) = E((f(x) − y)2), where E is the expectation operator.
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b. Support Vector Machines

The SVM method, (Vapnik (1999), Scholkopf and Smola (2002)) addresses the binary

classification problem.

Support vector machines find a linear separation function f(x) = sign(wTx + b) via the

optimization problem

min
w,b

1

2
‖w‖2 s.t. yi(w

Tx + b) ≥ 1

To handle outliers that might make that sets S1 and S2 not linearly separable, slack

variables ξi can be used, leading to:

min
w,b,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi s.t. yi(w
Tx + b) ≥ 1 − ξi (1)

The discrimination function in either case is

f(x) = sign(wTx + b) (2)

c. Minimax Probability Machine

The MPM method (Lanckriet et al. 2003) also addresses the binary classification problem.

Given S1 ∼ F1 and S2 ∼ F2 as above, the MPM method finds an optimal separating

hyperplane that minimizes the probability of misclassification. The MPM is based on a

probability theorem (Marshall and Olkin 1960) recast into an optimization framework by

(Popescu and Bertsimas 1999).

Consider a sample having mean x̄ and covariance matrix Σ. Given any convex set V ⊆

Rm, we’re interested in the maximum, over all distributions having mean x̄ and covariance Σ,
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of the probability that an observation x is in V . The surprisingly simple result is 1/(1 + d2)

where d is roughly the distance from x̄ to the closest point in V . That is,

sup
x∼(x̄,Σ)

P [x ∈ V ] =
1

1 + d2

where

d2 = inf
v∈V

(v − x̄)T Σ−1(v − x̄)

Here the supremum is taken over all distributions having mean x̄ and covariance matrix Σ.

Consider a hyperplane separating x̄1 and x̄2. V in theorem above can be taken to be the

half-space containing x̄2, and an observation from F1 is misclassified if it falls in V .

Similarly V in theorem above can be taken to be the half-space containing x̄1, and an

observation from F2 is misclassified if it falls in V .

By optimizing the selection of hyperplane, the probability of misclassification is mini-

mized.

d. The Kernel Trick

Many problems are not linearly separable. The “kernel trick” (Mercer (1909), Aizerman

et al. (1964), Vapnik (1999)) transforms a problem into a higher dimensional space in which it

may be linearly separable. The process involves two steps. First, the optimization problem

(eqn 1) and discriminant function (eqn 2) are expressed solely in terms of dot products

(xT
i xj).

Second, a map Φ and companion kernel K are created. The map Φ : xi ∈ Rm → yi ∈

H = RM where M ≫ m maps the input space into a high dimensional feature space H . In
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H , also known as the linearization space, the problem may be linearly separable, with the

possible exception of outliers.

The kernel function K satisfies K(xi,xj) = yT
i yj where yi = Φ(xi). Since both the SVM

and MPM can be expressed entirely in terms of dot products yT
i yj, the SVM and MPM

problems in feature space can be expressed in terms of the kernel K(xi,xj), avoiding all

computations in the high dimensional feature space H .

The most common kernel functions are:

linear: K(xi,xj) = (xT
i xJ)

polynomial: K(xi,xj) = (xT
i xJ + c)k

gaussian: K(xi,xj) = exp(−γ‖xi − xJ‖)

e. Multiclass Methods

While SVM and MPM are binary classification methods, they are easily extended to K

classes where K > 2.

One against all: K SVMs are trained each to discriminate a single class vs all the rest.

The decision function chooses the class showing the maximum value of all the SVMs.

One against one: For each of the K(K − 1)/2 pairs of observed classes, an SVM is

trained discriminate between the two classes. The decision function takes the most popular

class by vote among all the SVMs.

Binary tree: The observed classes are divided into two subsets, A and B, and an SVM

is trained to discriminate between sets A and B. Each subset A, B is divided similarly,
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recursively, creating a tree of subsets and associated SVMs. The leaf nodes consist of a

single class each. The decision function simply executes the SVMs in the tree.

In the present case two SVMs were used. The first distinguished between precipitation

= “none” (set A) vs all other (set B). The second SVM distinguished among B members:

precipitation = “frozen” (set B1) vs “liquid” (set B2).

3. Method

In this investigation the gaussian kernel was used for both SVM and MPM, and a binary

class division was used to handle the multiclass data.

For each of the SVM configurations described below, 10 random permutations of the

training data were used. For each such permutation a 5-fold cross validation was performed.

Because the MPM system was slower, each MPM configuration was tested with 5 random

permutations and a 5-fold cross validation. Thus each SVM configuration had 50 individual

test cases and each MPM configuration had 25.

Each of the individual test cases resulted in a measured accuracy ACC and multiclass

Peirce Skill Score PSS, also known as the Hanssen and Kuipers discriminant.

ACC =
1

N

∑

i

cii PSS =
1/N

∑
i cii − 1/N2

∑
i fioi

1 − 1/N2
∑

i o
2
i

where

N is the total number observations (number of test cases)

fi is the number of forecasts in class i
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oi is the number of observations in class i

cij is the number of forecasts in class i having observations in class j

The test results for each configuration are shown by a box plot in which the box bottom

and top represent the 25th and 75th percentiles, and the notched red bar represents the

median. The whiskers extend to the most extreme point within 1.5q past the box where q

is the interquartile distance.

4. Results

a. Software and Performance

The SVM tests used the C++ system libsvm (Chang and Lin 2008). The MPM tests used

a combination of the author’s own code and parts of Lanckriet’s MPM system (Lanckriet

et al. 2003). The MPM tests were written in the Octave mathematical language (Eaton

2008). Since C++ is a compiled language while Octave is interpreted, the SVM tests ran

approximately 1200 times faster than the MPM tests. Because of the slow speed of the MPM

system, the MPM system was tested only on the parametrization study below.

b. Parameterization

The performance of SVM using the Table 1 variables as a function of γ and C is shown

in Figures 1 (accuracy) and 2 (PSS). The best configuration was near γ = 0.3 and C = 10,

giving median accuracy of 69% and PSS of 46% in the cross validation tests. The performance
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of MPM as a function of γ is shown in Figure 3. The best performance was at γ = 0.007,

giving median accuracy of 67% and PSS of 42% in the cross validation tests. For SVM and

MPM, larger γ values decrease the radius of the influence of the training points. For SVM,

larger values of C give more weight to outliers.

c. Additional Wind and Radar Variables

In an attempt to make the wind and radar information more readily accessible to the

machine learning system, two sets of derived independent variables were tested: wind direc-

tion and speed, derived from urel and vrel; and radar-derived latitude and longitude, derived

from range and azimuth.

The performance of the SVM method with no, one, or both sets of additional variables is

shown in Figure 4. These tests showed resulted in negligible changes in accuracy and PSS.

d. Omitted Variables

Individual variables were tested to determine if omitting them would improve results

(Figure 5). Omitting tilt, azimuth, RhoHV, or Kdp provided a marginal increase in accuracy

and an increase of roughly 1% in PSS.

e. Categorized Values

In an attempt to make the data more accessible to the SVM method, the urel and

vrel fields were each divided into 10 categories by value, resulting in 100 new variables to
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express urel and vrel jointly (Figure 6). Thus a given urel,vrel combination (say urel =

3.2, vrel = 6.5) would be represented by one of the new variables having value 1, and the

remaining 99 being 0. Similarly, windDir and windSpeed were jointly divided, creating 100

new variables. Finally, windDir, windSpeed, and temperature were jointly divided, creating

1000 new variables. Dividing variables into categories decreased SVM accuracy by 4 to 7%

and decreased PSS by 8 to 12%.

5. Conclusion

This paper has given an overview of two kernel-based methods, support vector machines

and minimax probability machines, and their use in statistical weather prediction.

Using cross validation tests on the training data, the SVM method showed 2 % better

accuracy and 4 % better PSS than the MPM method. The SVM implementation was

approximately 1200 times faster than the MPM, making further experimentation with the

SVM method more feasible.

Tests to omit independent variables and to add derived variables proved fruitful in in-

creasing the prediction performance.

The cross validation tests on training data showed an accuracy of 70% and PSS of 47%.

On the final testing data the PSS was 35%.
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Table 1. Original independent variables

Label Description
lat latitude
lon longitude

tmpc 2 m air temperature (Celsius)
relh relative humidity (percent)
urel u (East-West) wind (W is pos)
vrel v (North-South) wind (S is pos)
frzl freezing level (m MSL)
tilt radar elevation angle (degrees)

range range from radar (km)
azimuth radar azimuth (deg, 0 is North)

hgt height of radar data (km)
Zdr differential reflectivity (dB)

RhoHV cross-correlation coefficient
Kdp specific diff phase (deg km-1)
Z reflectivity (dBZ)
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Fig. 1. SVM accuracy vs γ and cost C
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Fig. 2. SVM Peirce skill score vs γ and cost C
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Fig. 3. MPM accuracy and Peirce skill score vs γ
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Fig. 4. Comparison of SVM on original variables (“none”), using additional windSpeed and
WindDir variables (“wind”), using additional radarLat and radarLon variables (“radar”),
and using both sets of additional variables (“both”).
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Fig. 5. Comparison of SVM on original variables (“none”) with SVM omitting single vari-
ables
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Fig. 6. Comparison of SVM on original variables (“none”) with SVM categorizing urel
and vrel (“u,v”), or windSpeed and windDir (“wd,ws”), or windSpeed and windDir and
temperature (“wd,ws,t”)
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