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1. Introduction

The 2008 AMS Artificial Intelligence competition (Elmore
and Richman 2009) was based on the analysis of data
from a polarimetric weather radar. For each data point
the observed precipitation at the ground was in one of
three categories: none, liquid or frozen. We were sup-
plied with a training dataset of 847 observations. Each
data point had the observed category, as well as 16 po-
tential predictor variables (attributes).

The task was to develop a classifier which was then
applied to a test dataset of 363 data points, for which
the observed precipitation class was withheld. The pre-
dicted classes were to be compared with the observed
classes, and scored using the multi-category form of
the True Skill Statistic (sometimes called the Hanssen-
Kuipers Skill Score or the Peirce Skill Score).

The competition required a deterministic classification;
we chose to start by estimating class probabilities and
then trying different strategies for converting the prob-
abilities into a single deterministic class, with a view to
optimising the skill score. This paper describes those
strategies and how they gave quite different results for
optimising the True Skill Statistic (TSS), as opposed to
the Heidke Skill Score.

Unfortunately, only once the competition had been
judged, it was discovered that we had used the incor-
rect formulation of the TSS because there was an er-
ror in the definition referenced at the competition web
site. The TSS we used was quite susceptible to hedging.
Our highly hedged entry (referred to later as Strategy 2)
would have been a clear winner of the competition, if that
TSS had been used for the official judging. Classifica-
tions based on our more conventional strategies, judged
using the correct TSS or Peirce Skill Score (PSS), came
in the middle of the pack of the other entries.

No matter what score or utility function is used to
evaluate a set of deterministic classifications, this paper
demonstrates that there are strategies which are gen-
erally applicable to the conversion of class probabilities
to deterministic classes which can seek to optimise that
score over a complete dataset, and can also provide es-
timates of the distribution of the likely outcome of the
score.

∗Corresponding author address: Dr Neil Gordon, MetService, P.O.
Box 722, Wellington 6014, NZ; email: Neil.Gordon@msetservice.com.

2. Data and Method

a. Data

There are 16 potential attributes, including an index num-
ber, positional information, surface wind, temperature
and relative humidity, the freezing level, and radar po-
sitional, reflectivity and phase information.

We chose to make use of all the attributes, including
the index number. We noted missing sequential index
numbers in the training dataset, and suspected that the
index number may provide useful information about the
weather regime for the test dataset.

We ran our own mini competition among ourselves.
We removed a random selection of 100 observations
from the 847 in the training dataset, tried various clas-
sifiers on the reduced training dataset of 747 data points
and then tested our results on the withdrawn test dataset
of 100. We will refer to this as our internal test dataset.
The approach described here is based on a combination
of two of the successful methods.

b. Class Probability Estimation

The core algorithm we used is the random forests
(Breiman, 2001) implementation included within Weka
(version 3.5.8). Weka is a free, downloadable sys-
tem of machine learning software available via http://
sourceforge.net/projects/weka/, described by
Witten and Frank (2005). Weka is flexible and highly con-
figurable, and is easily able to read the datasets provided
for the competition. A series of experiments using 10-fold
cross-validation, trying many of the available Weka algo-
rithms, suggested that random forests worked well. We
have also had prior positive experience with the random
forests algorithm, and it has been used for previous AI
competitions (e.g., Williams and Abernethy 2008). For
this study, it was configured for 100 trees, with each tree
using three features.

The output from the random forests algorithm includes
class probability estimates, as well as the most likely
class (taken by default as the one with the highest prob-
ability). The class probabilities are simply a count of the
number of decision trees resulting in that particular class.
There is no guarantee that these are reliable probability
estimates, and they are also too confident since values
of 0% (0/100 trees) and 100% (100/100 trees) can ap-
pear.

We carried out a simple check on the reliability of the
random forests probabilities, as applied to the internal
dataset of 100 data points. With such a small sample,
we used just five bins. The diagrams shown in Figs 1
to 3 suggest the probabilities are reasonably reliable, as

1

http://sourceforge.net/projects/weka/
http://sourceforge.net/projects/weka/


 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ob
se

rv
ed

 fr
eq

ue
nc

y

forecast probability

Reliability - none

Figure 1: Reliability diagram for precipitation of none ver-
sus either liquid or frozen. The solid red line gives the
forecast versus actual probabilities in 5 bins, with the dot-
ted green diagonal line indicating perfect reliability.
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Figure 2: Reliability diagram for precipitation of liquid
versus either none or frozen.

they follow the diagonal quite well.
It may be possible to further process the probabili-

ties (e.g., using logistic regression) to make them more
reliable. However, for the purposes of this paper and
the competition we have treated the probabilities directly
from the random forests algorithm as being reliable.

c. Converting Probabilistic Forecasts to Deterministic
Classes

The competition was to be judged using the multi-
category form of the True Skill Statistic. The
definition of this score which we used, from
http://www.bom.gov.au/bmrc/wefor/staff/
eee/verif/verif_web_page.html, for K cate-
gories, was

TSS =
1
N

∑K
i=1 n(Fi, Oi)− 1

N2

∑K
i=1 N(Fi)N(Oi)

1− 1
N2

∑K
i=1(N(Fi))2

, (1)

where n(Fi, Oj) denotes the number of forecasts in cat-
egory i that had observations in category j, N(Fi) de-
notes the total number of forecasts in category i, N(Oj)
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Figure 3: Reliability diagram for precipitation of frozen
versus either none or liquid.

denotes the total number of observations in category j,
and N is the total number of forecasts.

Unfortunately, the definition at the referenced web site
was in error. The denominator used the counts of fore-
casts for each category, rather than the counts of obser-
vations as in the correct formulation in equation 7.21 of
Wilks (2006). This made it quite susceptible to hedging.
For convenience, we will continue to refer to this as the
TSS in this paper.

Another score which we also computed, is the Heidke
Skill Score (HSS). This is defined as

HSS =
1
N

∑K
i=1 n(Fi, Oi)− 1

N2

∑K
i=1 N(Fi)N(Oi)

1− 1
N2

∑K
i=1 N(Fi)N(Oi)

(2)

We trained the Weka random forests algorithm on the
training dataset, and then applied it to the test dataset to
produce estimated class probabilities for each observa-
tion. We then applied three Strategies:

1. Choose the class with the highest probability (also
the default method for assigning the class from the
Weka random forests algorithm)

2. Optimise the assignment of deterministic forecast
classes to the unknown observations in order to
maximise the TSS of the expected contingency ta-
ble. For any such assignment, it is a straightforward
matter to use the forecast probabilities to compute
an expectation for each member of the contingency
table, and hence calculate the objective. We approx-
imately solve the resulting combinatorial optimisa-
tion problem by an application of simulated anneal-
ing followed by simple steepest descent.

3. As for Strategy 2, only maximise the HSS of the
expected contingency table of predicted versus ob-
served.

There are many other possible strategies, but these
three were chosen because they are relatively simple
and straightforward to implement, and provide at least a
few representative examples. While simple, these strate-
gies might not be the most useful. For example, we could
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Figure 4: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 1: choos-
ing the class with the highest probability.

have tried the more difficult strategy of assigning the de-
terministic forecast classes to optimise the expected TSS
of the contingency table, rather than to optimise the TSS
of the expected contingency table (Strategy 2).

d. Evaluating the Strategies

Whatever the strategy to convert probabilities into deter-
ministic classes, given a set of resulting forecast classes,
we can use a Monte Carlo technique to sample from the
possible outcomes based on the predicted class proba-
bilities for the data points in the test dataset. This allows
us to compute a forecast distribution of any particular
score, on the assumption of the class probabilities being
reliable. We can do this to see whether the distribution
conforms with our utility. For example, we might want to
maximise our chances of winning a competition by max-
imising the probability of the score exceeding our guess
at what a typical “good” method would achieve, while not
also having a high chance of a very bad score.

Our Monte Carlo implementation used 100,000 sam-
ples. For each of these, we computed the resulting TSS
and HSS, and formed histograms using 1% bins. This
was done for both the internal test dataset and the com-
petition test dataset.

For our own internal test dataset of 100 data points
we could also compute the actual contingency table, and
TSS and HSS.

3. Results

a. Results for the Internal Test Dataset

Figure 4 shows the forecast distribution of the TSS
and HSS when applying Strategy 1 to our internal test
dataset of 100 data points. Note that the HSS is ex-
pected to be slightly smaller than the TSS, with both be-
ing in the vicinity of 0.5.

For this test dataset, unlike that used for the real com-
petition prior to judging, we know the answers. For Strat-
egy 1, the resulting contingency table is shown in Ta-

Predicted
none liquid frozen Total

none 7 4 8 19
Observed liquid 3 10 14 27

frozen 1 7 46 54
Total 11 21 68 100

Table 1: Contingency table for Strategy 1: choose class
with highest probability.
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Figure 5: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 2: opti-
mise the TSS of the expected contingency table.

ble 1. The frozen category is over-predicted, probably
because it is the most frequent class and so tends to be
chosen too often with this strategy. It occurred just 54
times, but was predicted 68 times. The average fore-
cast probability for frozen was 0.61, which implies that
the random forests algorithm was expecting 61 frozen,
and also 26 liquid and 13 none. This gives a TSS of
0.385 and an HSS of 0.333, which are within the forecast
distribution from Fig. 4, albeit towards the lower end.

Strategy 2, optimising the True Skill Statistic of the ex-
pected contingency table, gives quite different results.
Because of the nature of the form of the True Skill Statis-
tic that we used, which includes in its denominator only
the distribution of the forecasts, and not the distribution
of the observations, we are encouraged to produce clas-
sifications which are highly hedged. In fact, applying
this strategy results in a prediction of the frozen class for
all but two data points, which are predicted to be none.
Fig. 5 shows the results of the Monte Carlo simulations
for the HSS and TSS. We seem to have a very good
chance of achieving a high TSS of around 0.7. There is
also a low likelihood of blowing the prediction, and get-
ting a score in the vicinity of 0.5, or 0.3, or even negative
(this chance is so small that it is imperceptible on this
particular graph).

Clearly a prediction that all but two of the observations
will be frozen is of no practical value (aside perhaps from
winning competitions). In this case, the HSS seems to
be a more robust indicator of value as Fig. 5 shows the
expected HSS to have near or slightly above zero skill.

In actuality, for our internal test dataset, the Strategy 2
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Predicted
none liquid frozen Total

none 2 0 17 19
Observed liquid 0 0 27 27

frozen 0 0 54 54
Total 2 0 98 100

Table 2: Contingency table for Strategy 2: optimise the
TSS of the expected contingency table.
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Figure 6: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 3: opti-
mise the HSS of the expected contingency table.

prediction turned out to be correct for the two data points
classified as none, as seen in Table 2. The resulting
TSS is a very good 0.689 with an HSS (reflecting very
little skill) of 0.058.

Strategy 3, which optimises the HSS of the ex-
pected contingency table, produces almost matching his-
tograms of the expected HSS and TSS, as shown in
Fig. 6, with means of around 0.5. It is worth noting that
the TSS and HSS will be the same when the forecast
frequencies exactly match the observed frequencies. In-
deed, in this case the frequency of predicted classes is
a better match to the observed frequencies, with the re-
sulting contingency table in Table 3. The TSS is 0.379,
very slightly less than the 0.385 for Strategy 1, and the
HSS is 0.361, which is better than the 0.333 for Strategy
1. As with Strategy 1, both the TSS and HSS are within
the distributions in Fig. 6, although towards the low end.

Predicted
none liquid frozen Total

none 11 3 5 19
Observed liquid 3 10 14 27

frozen 3 9 42 54
Total 17 22 61 100

Table 3: Contingency table for Strategy 3: optimise the
HSS of the expected contingency table
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Figure 7: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 1, applied
to the competition test dataset.

b. Classifications for Competition Test Dataset

We received the competition test dataset of 363 data
points on 18 December 2008 and applied our approach.
We trained the Weka random forests algorithm on the full
training dataset of 847 data points, applied the algorithm
to the test dataset, and then used the three strategies
to convert the predicted class probabilities for the test
dataset to deterministic classes.

The average predicted probabilities for the competition
test dataset were 0.58 for frozen, 0.31 for liquid and 0.11
for none. This compares with the corresponding sam-
ple frequencies from the test dataset of 0.58, 0.28 and
0.14; the test dataset appears to have a similar distribu-
tion of precipitation types to the training dataset. For the
363 member test dataset, based on the random forests
probabilities, we would expect around 211 frozen, 113
liquid and 38 none observed classes. We subsequently
learned in January 2009 that the actual numbers were
206, 116 and 41; a good result.

Strategy 1 converts the probabilities to 242 frozen, 85
liquid and 38 none. So the frozen class is probably
over-forecast again, at the expense of the liquid. Again,
this expectation verified. The resulting histogram (based
again on 100,000 Monte Carlo simulations) is shown in
Fig. 7. The means of the TSS and HSS are around sim-
ilar values to those for the internal test dataset in Fig. 4,
but the distribution is much narrower because we have
more data and therefore less uncertainty. We might ex-
pect to have a good chance of achieving a TSS of at least
0.45 from Strategy 1.

Applying Strategy 2 to the competition test dataset re-
sults in all the data points bar one being classified as
frozen. The single none is the observation with the index
number of 1696, for which the random forests algorithm
gave a probability of 98% for the none class. The re-
sulting histogram is shown in Fig. 8. The histogram for
the TSS shows three peaks resulting from observed out-
comes of none (correct), liquid or frozen for this particu-
lar data point, with some uncertainty about those points
due to Monte Carlo sampling for the remainder of the
data points. We expect these distributions to be under-
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Figure 8: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 2, applied
to the competition test dataset.
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Figure 9: Histogram (based on 100,000 Monte Carlo
simulations) of the TSS and HSS for Strategy 3, applied
to the competition test dataset.

dispersive; they should be wider. Still, on the face of it, a
competition entry based on this strategy had a very good
chance of achieving a score using the TSS as defined of
around or just over 0.7.

For Strategy 3, the frequency of predicted classes is
217 frozen, 102 liquid and 44 none, which is a better
match to what we expected the observed frequencies
would be in the competition test dataset. This indeed
turned out to be the case, when we received the veri-
fication dataset in January 2009. The histogram of the
expected TSS and HSS is shown in Fig. 9. The TSS and
HSS have similar distributions, and are again much nar-
rower than for the internal test dataset, because we have
more data.

4. Choice of Official Entries to the
Competition

For our main formal entry to the competition we chose to
submit the results for Strategy 2. We didn’t think this pro-
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Figure 10: Histogram (based on 100,000 Monte Carlo
simulations) of the pairwise difference of the TSS and
HSS of the predictions using Strategy 3 minus the TSS
and HSS for the predictions using Strategy 1, applied to
the competition test dataset.

vided a particularly useful classification, but we believed
it had a good chance of winning, given the official judging
criterion of using the True Skill Statistic as defined on the
referenced web page.

We also wanted to submit at least one extra entry with
useful results. The question was whether that should
be based on Strategy 1 or Strategy 3. We again used
100,000 Monte Carlo simulations to compare the pair-
wise differences between the TSS and HSS, with the re-
sulting histograms in Fig. 10. This shows that the dif-
ferences are not significantly different from zero for ei-
ther of them, although the HSS had perhaps a two-thirds
chance of being higher for Strategy 3 than for Strategy
1, and the TSS was quite likely to be less for Strategy 3
than for Strategy 1.

On balance, we submitted a second entry using Strat-
egy 1, since we thought that was also likely to do rea-
sonably well using the official judging criterion of the (in-
correct) TSS. If the criterion had been the HSS, Strategy
3 is what we would have used for the second entry. In
practice, we provided classifications based on all three
Strategies to the organisers on 19 December 2008.

5. Competition Result and Conclu-
sions

This competition required a deterministic classifier for
weather radar observations, using a judging criterion
based on the True Skill Statistic. We took the approach
of training a probabilistic classifier and then developing
strategies for converting the probabilities to determinis-
tic classes to obtain good skill scores, and also using
the probabilities to forecast the likely distribution of the
scores on a test dataset. We found that for this partic-
ular case, and our method, the True Skill Statistic (that
we used) can be hedged, and we submitted one official
entry which appeared to have a good chance of a very
high score using the judging criteria, but was otherwise
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valueless.
We were dismayed when we received the results on

20 December 2008. We were advised that the TSS for
our official entry based on Strategy 2 (optimising the
TSS) was 0.007. We assumed that our gamble of the
single none had not paid off. It was only in early Jan-
uary 2009 that we realised that such a score was very
unlikely, given the expected scores from Fig. 8. Our
score should have been around +0.73, +0.25 or -0.26;
not around zero.

On querying the organisers of the competition, the er-
ror in the TSS formulation we used was discovered. It
also eventuated that this incorrect formulation had been
used to judge the previous year’s competition.

On obtaining the full verification dataset, we calculated
that, using the TSS we had assumed was correct, our
score was 0.730 for Strategy 2, 0.334 for Strategy 1 and
0.303 for Strategy 3. This validated our choice of en-
tries for the rules we were playing to, and we were quite
satisfied with this result. Although the scores for Strate-
gies 1 and 3 were at the very lower limits of what might
have been expected from Figs 7 and 9, the difference of
0.03 between Strategies 1 and 3 was close to the mean
expectation from Fig. 10.

Using the correct formulation for the TSS or PSS, our
score was 0.007 for Strategy 2 (which the organisers
agreed would no longer be our official entry), 0.291 for
Strategy 1 and 0.295 for Strategy 3. Strategy 3, since it
was based on optimising the HSS which was similar to
the correct TSS, became our new official entry; it was
placed in the middle of the pack with scores for other
competition entries which ranged from 0.236 to 0.355.

No matter what score or utility function is used to
evaluate a set of deterministic classifications, this paper
demonstrates that there are strategies which are gen-
erally applicable to the conversion of class probabilities
to deterministic classes which can seek to optimise that
score over a complete dataset, and can also provide es-
timates of the distribution of the likely outcome of the
score. Of course, if future competitions were to be based
on probabilistic forecasts or classifications, then such a
conversion would not be necessary.
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