
7AI Ensemble Classifier for Winter Storm Precipitation in
Polarimetric Radar Data

Rajibul Alam
School of Computer Science

University of Oklahoma
Norman, OK

rajibul@ou.edu

Emmanuel Goossaert
School of Computer Science

University of Oklahoma
Norman, OK

emmanuel.goossaert@ou.edu

Abstract

The precipitation classification problem for this con-
test consists of classifying data instances into three
class types: frozen, liquid and none. Based on our
experiments on the data set using available open
source classifiers, we observed that different algo-
rithms have different precisions for each class type.
Thus, we decided to develop two classifiers adapted
to the data set: Neural Network and Decision Tree.
Our implemented solutions had similar performance
issues as the open source classifiers. Since individ-
ual classifiers are unable to provide high accuracy
classification for all of the class types, we chose to
combine the best classifiers using a multi-class lin-
ear ensemble technique. This technique allows the
different classifiers to vote based on their accuracy
and precision for each class type. The obtained solu-
tion performs better compared to the individual clas-
sifiers that compose it. These classifiers are: De-
cision Tree C4.5 and J48, Neural Network, Naive
Bayes, Naive Bayes Tree, Bayes Network, Random
Forest, OneR and SMO.

1. Introduction

During winter storms, the prediction of precipitation
types is vital for taking early safety measures. The
first attempts of such prediction have been made us-
ing data provided by polarimetric radars, but they
produced extremely poor results. Due to this fail-
ure, several attempts with new techniques have been
made to improve the classification accuracy, and this
project contributes toward the same objective.

One of the main reasons behind the failure to
achieve high accuracy is that the problem is a three
class classification. Therefore, the task is harder
compared to a two class problem. This issue has

been observed in a similar classification experiment
which consists in the forecasting of short-term rain
falls based on radar data. It has been shown that ac-
curacy drops when the number of classes increases
from two to three (Ingsrisawang et al. 2008). It has
also been observed that different classifiers are able
to classify different precipitation types with differ-
ent precisions. Therefore, only one classifier is not
enough to classify all types of precipitation properly
and doesn’t provide high accuracy rates. Consid-
ering these limitations, we combine several classifi-
cation techniques into an ensemble classifier. Our
hypothesis in this regard is that the ensemble tech-
nique will give higher accuracy compared to each of
the individual classifiers.

2. Precipitation Classification

The task is to classify each instance of our dataset
into one of the three categories: liquid, none or
frozen. The data comes from meteorological ana-
lyzes of environmental conditions close in time and
space to the actual observations, along with data
from a polarimetric radar. The data contains fifteen
attributes, excluding the index and instance label,
and includes information regarding the location, tem-
perature, humidity, freeze level, radar information,
etc. Considering these attributes, it is obvious that
data preprocessing is required. As a consequence,
for the training of our classifiers we removed the lon-
gitude and attribute from the data, since they are
more biased than meaningful for our classification
problem.

This classification of precipitation types is ex-
tremely challenging and interesting due to the fact
that it just uses meteorological and radar data. In ad-
dition, since several known classifiers have already
been applied to this problem with no significant high

1



accuracy, it provides an opportunity to experiment
with some new ideas. This classification problem is
also important because if a highly accurate classifier
can be designed, then it would be possible to take
measures early for public safety. This would signif-
icantly cut off the loss that people undergo due to
winter storms each year.

3. Classification Algorithms

As mentioned before, we plan to design an ensem-
ble machine learning classifier to address this pre-
cipitation classification problem. The critical factor to
achieve this goal is the selection of classifiers, since
it is vital to achieve high accuracy from an ensemble
technique. Thus, based on performance mentioned
in different related classification experiments (Jain
et al. 1996; Umehara et al. 2008; C. Venkatesan
1997; Alexiuk et al. 1999), we decided to implement
a neural network and a decision tree specifically for
this problem. Moreover, we use some available clas-
sifiers from the Weka open source library(Witten and
Frank 2005) to populate our ensemble method. This
process is illustrated in Figure 1.

Figure 1: Ensemble method process

3a. Decision tree

Since the problem is a three-class problem, not all
decision tree algorithms can be used. We decided
to use the C4.5 algorithm, because the entropy infor-
mation function allows to classify over a determinis-
tic number of classes. In addition, all the attributes in

the data set are interval attributes. Our implementa-
tion of the C4.5 algorithm takes this into account, so
that each splitting at a node always creates a maxi-
mum of two sub-nodes.

We have two kind of nodes: split nodes and leaf
nodes. Split nodes contain a real value used as a
threshold, which allows to search into the tree. Leaf
nodes just contain the identifier of the class at this
location of the tree. The construction of the tree, that
is to say the splitting process, stops when all nodes
at the bottom of the tree are leaf nodes. The subset
of the data set described by a leaf node contains
instances of only one single class. This way, when a
request is performed on the tree, it is directed down
the tree by the split nodes until it hits a leaf node,
which gives the computed classification.

While we are building the tree, we are testing it
at each step. Obviously, not all of the leaf nodes
have been created at those steps, thus when a re-
quest hits a split node which does not have any sub-
nodes, it classifies the instances using the proportion
of each class observed at this node.

3b. Neural network

The implemented neural network contains thirteen
input neurons, one for each attribute after filtering out
the location information, and obviously three output
nodes to represent the three class types. Consider-
ing the dataset and the number of attributes, the net-
work contains only one hidden layer with eight hid-
den neurons. The number of neurons in this layer
is determined based on the performance of the net-
work after some experiment by trying with several
number of nodes (starting from three hidden nodes
and going up to ten).

The network is fully connected. Each of the con-
nections has a random weight at start within the
range [-1, 1], and based on back-propagation these
weights are then updated. A feed forward process is
used to get the outputs from each node, and a sig-
moid function is used in hidden and output layers to
compute the output values. The sigmoid function is
used mainly because it generates value between 0
and 1, and as this problem is a three class classi-
fication problem, sigmoid works better compared to
tanh. Learning rate is another vital component of a
neural network. After several trials, we decided to
use a variable learning rate to help the network to
achieve a higher accuracy. The learning rate starts
at 0.005 and is decreased by half each time the net-
work reaches a local minima. Eventually, the learn-
ing process is stopped using an early-stop method
when the difference between two consecutive accu-

2



racy rates goes below a certain threshold.

3c. Ensemble learning

The well-known Bagging, Boosting and Ada Boost
techniques are not applicable in our case (Polikar
2007; Ratsch 2003). They consist of using the same
classifier several times, whereas we want to use
different kinds of classifiers all together. Thus we
choose to use a weighted voting system (Polikar
2006). That is, each of the classifiers has a specific
weight on the votes, based on the precision of its
predictions for each class. For instance, if one clas-
sifier has better precision in classifying the frozen
instances, then when this classifier classifies an in-
stance as ”frozen” it is given higher weights com-
pared to another algorithm classifying the same in-
stance as ”none”. But as the neural network and
the decision tree are implemented specifically for
this classification problem, these two classifiers get
more weight on their votes compared to the classi-
fiers from the Weka library.

Also, considering the precision problems on the
liquid and none classes, we decided to include a bi-
ased classifier in our ensemble technique. That is,
we trained a decision tree using our algorithm, but
with a specific sub set of the data set, containing
more instances of the liquid class compared to the
frozen and none classes. The goal is to obtain a
classifier that is able to classify better the liquid in-
stances rather than a classifier trained on the whole
data set. And since the data set does not present
enough instances of the none class, we do not use
a none biased classifier.

The classifiers from Weka are used with their de-
fault settings, and are selected based on their accu-
racy on a 10-fold cross validation process. Table 1 in
Section 5 contains a complete list of those classifiers
along with their performance metrics. The whole en-
semble process is very straight forward. This pro-
cess is described by the following steps:

1. Train the Neural network with the training set.
Assign voting weight based on accuracy.

2. Train the decision tree. Assign voting weight
based on accuracy.

3. Train weka classifiers using the training set. As-
sign voting of each class based on precision of
the class along with accuracy of the classifiers.

4. Feed the testing set to the Weka classifiers,
neural network and decision tree. Store the re-
sults for each classifier separately.

5. Using the precision and accuracy of each clas-
sifier on each class type, assign weights. Then
multiply the votes of each classifier by its
weights, and sum up the obtained values for all
the classifiers over each class type. The final
classification is made based on the highest vote.

4. Performance Metrics and Vali-
dation Process

We use two different metrics to test the performance
of our algorithms. The first one is the accuracy
(ACC), which corresponds to 1 − errorrate, and the
second one is the Pierce Skill Score, also called True
Skill Statistic (TSS). We prefer TSS over the accu-
racy because it is a more meaningful metric for multi-
class problems, since it takes into account the clas-
sification over all the classes, whereas the accuracy
simply considers the fact that an occurrence is either
well classified or misclassified.

Since the performance of a classifier depends
mostly on the training set which is used, we decided
to adopt the cross-validation methods with 10 folds.
That is, the initial dataset is decomposed into 10
equally sized folds, and the classifiers are built and
tested 10 times, each time with 9 of the folds used
as the training set and the remaining one used as
the testing set. Then, we average the performance
values obtained on each of those trials in order to
obtain a more accurate estimation of the real perfor-
mance.

5. Results

5a. Decision tree results

The results we obtain with the decision tree are not
common. The performance of the testing set seems
to decrease over the whole learning process, which
tends to be quite logical since the tree is probably
overfitting very early. But there is a huge jump in
the last twenty steps, and we think that some really
meaningful splittings must occur in this period. Still,
we consider that in our case, no pruning phase is
necessary, and we will use the computed tree just
as it is in its final state. We manage to reach a TSS
of 0.33, which we think is a good value considering
the difficulty of the task.

3



0 20 40 60 80 100 120 140 160 180
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of nodes

A
cc

ur
ac

y

 

 

Training set
Testing set

(a) Accuracy

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nodes

T
S

S

 

 

Training set
Testing set

(b) TSS

Figure 2: Decision tree performance with 10-fold
cross-validation

5b. Neural network results

Figure 3 shows how the accuracy of the neural
network increases along with learning steps. We
present one curve for every class, and thus we can
observe that the network presents a different accu-
racy for every class. It achieves to get an accuracy
of 74% and a TSS of 0.55. We cannot compute a
10-fold cross validation test on the neural network,
because the time required by the learning process
is too long. This is why we cannot provide val-
ues for the testing in Table 1. Finally, the neural
network provides classification probabilities for the
three classes, and instances are classified into cer-

tain types based on highest probabilities.

0 1 2 3 4 5 6

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of iterations

A
cc

ur
ac

y

 

 

Global error rate
Liquid class error rate
Frozen class error rate
None class error rate

Figure 3: Neural network learning curve

5c. Ensemble technique results and performance
summarization

With regard to the ensemble technique, we think that
the lack of performance comes from the fact that all
the classifiers we are using have the same precision
in their classification of the three different classes. It
seems that the frozen state is easily classified, but
that the two other states, liquid and none, are most
of the time wrongly classified. Thus we think that
most of the errors observed in the final classifiers
and in the ensemble classifier are due to their in-
ability to correctly classify liquid and none instances.
The fact is our data set only contains around 250 liq-
uid instances. As a consequence, this is possible
that the classifiers do not have enough information
to correctly learn how to classify those instances. A
better performance may be reach with more data of
the liquid class.

Our ensemble technique is performing better than
all our classifiers taken separately, based on the TSS
metric. We obtain a value of 0.36 whereas the higher
value reached so far was 0.33 by our implementation
of the C4.5 algorithm for the decision tree. This rep-
resents a meaningful increase of performance. Ta-
ble 1 summarizes all the results we obtain thanks to
a 10-fold cross validation over all the classifiers.

6. Related Work

Radar data has already been used for classification.
During the developed a multi-state precipitation es-

4



Algorithm
Accuracy TSS

Train Test Train Test
Decision tree C4.5 77% 72% 0.60 0.33
Neural network 74% N/A 0.55 N/A
Random algorithm 33% 33% 0.0 0.0
Bayes network 66% 61% 0.41 0.27
Naive Bayes 64% 61% 0.38 0.28
Naive Bayes tree 74% 56% 0.55 0.21
Decision tree J48 83% 65% 0.71 0.31
Random Forest 98% 57% 0.97 0.16
OneR 69% 65% 0.46 0.33
SMO 67% 62% 0.43 0.32
Ensemble technique 82% 66% 0.70 0.36

Table 1: Accuracy and TSS for all the classifiers
computed over a 10-fold cross validation

timation system using support vector machines and
neural networks, an error rate inferior to 15% has
been achieved (Umehara et al. 2008).

Also, genetic algorithms can be used for this kind
of classification. It has been shown that one can
find the best linear discriminant line into the data set,
and classify the data set into two classes, rainy and
non-rainy (Sen and Oztopal 2001). A small number
of input parameters is used, but an important num-
ber can be used to refine the results. This solution
provides only 13% of misclassification, which con-
stitutes a very good result. We are looking forward
to seeing if such a technique could correctly classify
our precipitation data.

Finally, it is possible to use a set of neural net-
works. Given a set of neural networks which perform
worse individually compared to a highly trained neu-
ral network, it is possible to merge those networks
into an ensemble technique, which will perform bet-
ter than the highly trained neural network (Hansen
and Salamon 1990).

7. Future Work

The main problem of our approach is that it does
not solve the problem of the liquid and none classes.
Liquid and none instances are apparently very hard
to predict, at least for the classifiers we trained and
those we tried using the Weka library. Most of the
mistakes in classification come from these labels.
Consequently, there are two possible ways to solve
the problem, we can either add more instances of
the liquid and none instances to the training data,
and see if the performance improves, or we can find
a classifier that performs well on these classes, or at

least on one of them, and merge its capability to the
ones we already have in our ensemble technique.

8. Conclusion

Throughout this paper, we have presented the imple-
mentation of two classifiers along with an ensemble
classifier, in order to settle our three-class precipi-
tation classification problem. We have shown that
the classifiers we developed achieved better perfor-
mance than the general classifiers available in the
Weka library. But due to a serious problems with
regard to the classification of the liquid and none in-
stances, it seems that all the classifiers obtain glob-
ally the same classification precision. Ensemble
techniques are only relevant if the classifiers comple-
ment one another (Dietterich 2002), which is clearly
not the case here. In order to increase significantly
the performance of the classification, we need to de-
velop a classifier able to correctly classify the liquid
and none instances.

References

Alexiuk, M., N. Pizzi, and W. Pedrycz, 1999: Clas-
sification of volumetric storm cell patterns. Con-
ference on Electrical and Computer Engineering
CCECE-99, 1081–1085.

C. Venkatesan, R. K., S.D.Raskar, 1997: Prediction
of all india summer monsoon rainfall using error-
back-propagation neural network. Proceeding of
the Metrol Atomos Phy 62, 225–240.

Dietterich, T. G., 2002: In The Handbook of Brain
Theory and Neural Networks. The MIT Press.

Hansen, L. K. and P. Salamon, 1990: Neural net-
work ensembles. IEEE Trans. Pattern Anal. Mach.
Intell., volume 12, 993–1001.

Ingsrisawang, L., S. Ingsriswang, S. Somchit,
P. Aungsuratana, and W. Khantiyanan, 2008: Ma-
chine learning techniques for short-term rain fore-
casting system in the northeastern part of thai-
land. Proceeding of the World academy of sci-
ence, engineering and technology , volume 31,
248.

Jain, A. K., J. Mao, and K. Mohiuddin, 1996: Artificial
neural networks: A tutorial. IEEE Computer , 29,
31–44.

5



Polikar, R., 2006: Ensemble based systems in de-
cision making. IEEE Circuits and Systems Maga-
zine, volume 6, 21–45.

— 2007: Bootstrap inspired techniques in computa-
tional intelligence: ensemble of classifiers, incre-
mental learning, data fusion and missing features.
Signal Processing Magazine, IEEE , volume 24,
59–72.

Ratsch, G., 2003: Robust multi-class boosting. Eu-
roSpeech IEEE .

Sen, Z. and A. Oztopal, 2001: Genetic algorithms
for the classification and prediction of precipitation
occurrence. Hydrological Sciences Journal, vol-
ume 46, 255–267.

Umehara, S., T. Yamazaki, and Y. Sugai, 2008:
A precipitation estimation system based on sup-
port vector machine and neural network. IEICE
Transactions on Information and Systems, Pt.2
(Japanese Edition).

Witten, I. H. and E. Frank, 2005: Data Mining. Mor-
gan Kaufmann.

6


