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1. INTRODUCTION 

 
The ability to determine precipitation type 

instantaneously across a forecast area would provide 
forecasters with much more information about current 
weather conditions.  Currently, weather observations 
are reported once per hour from reporting sites at 
airports and other official reporting stations.  These 
locations are not fit to a grid with clusters of reporting 
sites closer to urban areas and less reporting sites in 
rural areas.  This unequal distribution of sites can make 
determination of precipitation type difficult throughout 
the forecast area. 

The polarimetric radar sends out pulses of radar 
waves that bounce off of particles in the atmosphere 
and the energy is reflected back to the radar dish.  A 
computer processes the returned signals and through 
the use of algorithms can make conclusions about the 
particles it saw.  The polarimetric radar measures such 
variables as the differential reflectivity, correlation 
coefficient, linear depolarization ratio, specific 
differential phase, and cross-polar terms that have yet to 
be fully studied.  Since the polarimetric radar is able to 
measure more weather variables than Doppler radar, 
the polarimetric radar has many more applications.  A 
method to determine precipitation type based off of the 
variables measured by the polarimetric radar would give 
forecasters an instantaneous view of the current 
weather and improve short term forecast skill.1  

The regime dependent nature of the atmosphere 
has been studied in multiple aspects of weather and 
climate.  In 1986, Brown et al. found that smaller scale, 
transient eddies may play a regime-dependent role in 
interactions with atmospheric circulation modes on the 
scale of persistent anomalies. In 1990, Zwiers and 
Storch introduced the class of regime dependent 
autoregressive time series modeling of the Southern 
Oscillation.  In 1998, Paul J. Roebber examined the 
manner in which degree day forecasters adjust their 
reliance on particular pieces of forecast information as 
the large-scale flow pattern evolves into different 
regimes and found that the weighting of MOS was 
situation dependent and that forecast skill and value 
were maintained under large-scale flow regimes in 
which MOS was less useful through significant 
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adjustment of forecast technique. In 2007, Deloncle et al. 
used the k-nearest-neighbor classifier and the random 
forest statistical learning techniques to predict the 
transition between weather regimes from a three layer 
quasigeostrophic model.  Greybush et al. (2008) 
showed that the K-means regime-clustering post-
processing method produced the lowest MAE in two-
meter temperature forecasts when compared with 
regime regression, a genetic algorithm regime method, 
and different windowed performance-weighted averages.   

In this study, the goal is to use the k-nearest-
neighbor classifier to determine precipitation type from 
the polarimetric radar data.  The hypothesis is that there 
are specific characteristics, or regimes, that are 
associated with each precipitation type.  Therefore, the 
k-nearest-neighbor classifier is used because this 
clustering method separates the data based on 
similarities between various classes.  Although each day 
is not assigned to a specific cluster, or regime, this can 
be interpreted as a regime identification method 
because it separates the data by class similarities and 
dissimilarities. 

 
2.  METHODS 
 

This study uses data provided by the 2008 
American Meteorological Society Artificial Intelligence 
Contest.  There are 847 observations used in the 
training dataset and 363 in the testing dataset.  The 
variables in the datasets are: index, latitude, longitude, 
two-meter air temperature, relative humidity, u-
component of the wind, v-component of the wind, 
freezing level, tilt, range, azimuth, height of radar data, 
differential reflectivity, cross-correlation coefficient, 
specific differential phase, and reflectivity.  The 
observed precipitation type is only given in the training 
data.  The observed precipitation type is listed as frozen, 
liquid, or none.  The majority of the polarimetric radar 
data is complete; however, there are multiple missing 
differential reflectivity, cross-correlation coefficient, and 
specific differential phase.  The percentage of missing 
data is shown in Table 1. Due to lack of time and similar 
percentages of missing values in both the training and 
testing data, the missing values were not replaced or 
deleted. 

 
 
 
 

 
 
 



 
Differential 
Reflectivity 

Cross-
Correlation 
Coefficient 

Specific 
Differential 
Phase 

Percentage of 
Training 
Cases Missing 

12.51% 12.51% 26.45% 

Percentage of 
Testing Cases 
Missing 

8.82% 8.82% 21.76% 

Table 1.  Percentage of missing values in testing and 
training data. 

 
The first step in indentifying atmospheric regimes 

by the polarimetric radar is deciding what variables to 
use.  Three different sets of polarimetric radar data are 
used in this study.  The first method simply uses all 
possible weather variables.  This method takes longer to 
cluster and has a greater chance classifying instances 
based off of chance relationships in the data, or 
overfitting, because there are more possible 
associations between variables.   

The second method uses principal component 
analysis to determine which variables are the most 
important in classification.  The principal component 
analysis determined that the first 12 variables added 
valuable information to the clustering and variables 13, 
14, and 15 are insignificant.  The first 12 variables are 
latitude, longitude, two-meter air temperature, relative 
humidity, u-component of the wind, v-component of the 
wind, freezing level, tilt, range, azimuth, height of radar 
data, and differential reflectivity.  The elimination of 
cross-correlation coefficient and specific differential 
phase are likely due to missing values that skew the 
actual relationships in the data.   

The third method uses an attribute subset evaluator 
from Weka.  Subset evaluators use a subset of 
attributes to calculate a numeric measure that guides 
the search.  Correlation-based Feature Subset Selection 
is used to assess the variables, or predictors.  This 
subset evaluator calculates the predictive ability of each 
attribute individually, as well as the degree of 
redundancy between them.  This creates a set of 
predictors with high predictive ability and low 
intercorrelation. 

The type of machine-learning algorithm used in this 
study is the k-nearest-neighbor instance-based learning.  
An instance-based learning method uses the instances 
themselves to represent what is learned, rather than 
inferring a rule set or decision tree and storing it instead.  
In this type of instance-based learning, the real work is 
done when it is time to classify a new instance; 
therefore, because instance-based learning defers the 
work for as long as possible, it is defined being lazy.  A 
nearest-neighbor classification method compares a new 
instance to an existing one using a distance metric to 
assign the class to a new one.  In the k-nearest-
neighbor method, the distance-weighted average of k of 

the closest neighbors is used to assign the new instance.  
Although the k-nearest-neighbor classification does not 
distinctly define a cluster for each instance, the k-
nearest-neighbor classification can be thought of as 
assigning precipitation type depending on the most 
similar regime.  It has also been shown that the k-
nearest-neighbor method can identify transitions 
between regimes (Deloncle et al 2007).  The k-nearest 
neighbor machine learning algorithm is trained on each 
of the three different subsets of variables and predicts 
the precipitation type for the testing data. 

Woodcock and Engel (2005) argued that the 
combination of forecasts can improve prediction upon a 
single more complex algorithm.  Therefore, after 
classifying each instance as liquid, frozen, or none in 
the testing data, the mode of the forecasts is used as 
the deterministic forecast.  The mode of the forecasts is 
used because the forecast is nominal.  For the three 
different forecasts per index, only one had three 
different predictions.  For that index, a forecast of frozen 
is applied because frozen was the most common 
observed values in the training dataset. 

 
 

3. RESULTS 
 
The goal of this study is to determine precipitation 

type from polarimetric radar data.  The metric used is 
the multi-categorical form of Peirces’s Skill Score (PSS), 
which is also referred to as the true skill statistic or the 
Hanssen and Kuipers discriminant,.  The PSS is a value 
between negative one and positive one.  Zero indicates 
no skill over a baseline forecast, which in this case is 
climatology.  A score of one indicates a perfect forecast.  
A bootstrap analysis was performed and 95% bootstrap 
BCa confidence intervals with 1000 replicates was 
calculated.  The lower value for the k-nearest-neighbor 
classifier is calculated to be 0.204, the mean value is 
0.2842, an upper value of 0.3730, and an official Pierce 
Skill Score of 0.28510. 

 
Lower Mean Upper PSS 

0.204 0.2842 0.3730 0.28510 
Table 2. Peirce Skill Score results. 
 

4. CONCLUSIONS 
 
The results show that there is forecast ability in the 

k-nearest-neighbor classifier.  A value of 0.28510 for the 
Pierce Skill Score is above zero, which is a no skill 
forecast, and below one, which is a perfect skill forecast. 
A permutation test (3000 permutations) for a significant 
difference (at 95%) showed that there is statistical 
significant between a PSS of 0.28510 and zero.  This 
means that there is statistically significant difference 

 
 
 



 
 
 

between climatology and the k-nearest-neighbor 
classifier. Although the results show that there is skill in 
the k-nearest-neighbor classifier, there are more 
advances that could improve upon this forecast.  First, 
addressing the issue of missing forecast would likely 
improve forecast ability.  Although the differential 
reflectivity, cross-correlation coefficient, and specific 
differential phase had numerous missing values, the 
available values were important for forecasting.  In the 
analysis with the Correlation-based Feature Subset 
Selection, these variables showed correlation coefficient 
values with the observed much higher than all but four 
other variables.  I would hypothesize that a full dataset 
of these variables would have much higher correlation 
coefficients and likely add significant value to the k-
nearest-neighbor classifier.  A method to impute the 
missing values by finding correlations between variables 
would likely help improve the classifier.  Second, a 
combination of more variables sets would likely improve 
the results.  In this study there are three different sets of 
variables used.  Combining more subsets of variables 
could also add value to the forecast.  Third, a weighted 
average scheme would also improve the forecast.  In 
this study, the mode of the forecasts was used; however, 
using a weighted average could add value to a dataset 
that had a better skill score on the training dataset.  
Finally, a combination of multiple instance based 
classifiers could improve precipitation type forecast 
ability. 
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