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Abstract

We built three different AI models to predict the category (frozen, liquid
or none) based on polarimetric radar variables. One model was a long-shot
model for the purpose of winning the competition (it didn’t). The second was a
complex black box model to represent the average learnability of the dataset.
The third was a simple, human-readable model that would perform similarly to
the above two models but possess the additional advantage of being easy to
implement and comprehend.

1. Introduction

The number of training (847) and testing
(346) patterns is misleadingly large. Be-
cause the dataset was concentrated in Ok-
lahoma and collected on a handful of win-
ter events, the true number of indepen-
dent training and testing instances is actu-
ally far less. We hypothesized that there
would be no virtual difference in skill be-
tween simple and more complex models on
such a small dataset. Therefore, any good
approach would be middle-of-the-pack. In
such a situation, the most easily justifiable
approach is to build simple models. If the
testing patterns were chosen from the same
set of cases, then it was likely that a near-
est neighbor approach might even beat out
the competition even if it would not be oper-
ationally feasible. Hence, we built three AI
models:

• a nearest neighbor approach because
we felt this afforded a reasonable
chance of actually winning

• a neural network

• a simple decision tree

The nearest neighbor approach did not
win because the creator of the data set had
the foresight to choose the test patterns
from a different pool than the training pat-
terns! But as expected, the NN and deci-
sion tree were well within the performance
bounds of the best submitted entries. Be-
cause the decision tree, especially, is much
simpler, we suggest that it would be a bet-
ter candidate for operational implementa-
tion than techniques that are harder to com-
prehend or implement.

If a human-readable data-driven model
provides results statistically similar to com-
plex methods, then the non-technical ben-
efits of a human-readable model should
cause it to be selected.
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2. Preprocessing

We omitted attributes that should, physi-
cally, not matter in the final classification,
using only the following attributes:

1. Temperature in Celsius

2. Relative Humidity

3. Speed (computed from the u and v
components)

4. Freezing level

5. Height above freezing (computed by
subtracting the height from the freez-
ing level)

6. Zdr

7. RhoHV

8. Kdp

9. Z

In addition, we created two new features
that form a pre-classification: whether the
pattern in question corresponds to ”clear
air” or to ”frozen”. To create the clear-air
preclassification, we divided up the dataset
into two parts: those for which the cate-
gory was ”none” and the rest. To create the
frozen classification, we similarly created a
binary dataset based on whether or not the
category was ”frozen”.

Whether or not a pattern corresponded
to clear-air was learned from the training
data set using a decision tree (Quinlan
1993). The clear-air attribute was set to 1
if the following condition was met:

RhoHV <= 0.768208 AND \\
Z <= 10.626065 AND \\
RelH > 81 AND \\
( HtAboveFreezing <= 853 OR \\

HtAboveFreezing > 1113)

Otherwise, it was set to zero. The frozen at-
tribute was set to 0 if the following condition
was met:

RhoHV <= 0.487228 OR
(TmpC > -2.143738 AND \\
Z <= 24.4076)

Otherwise, it was set to one.
So, the final number of inputs to the

training set of routines was 11. We used
WEKA (Witten and Frank 2005) to perform
the training.

3. Methods

The training of each of the models followed
a cross-validation approach. The model
was trained on 90% of the data and tested
on 10%. This was repeated ten times and
the average cross-validated accuracy (per-
cent correct) was used as the measure of
the ”goodness” of the model.

As explained earlier, the first model we
trained was a nearest-neighbor model. A
candidate pattern was assigned to a cate-
gory based on the category of its 10 clos-
est neighbors. The distance measure used
was simply the Euclidean distance of the 11
feature attributes. Rather use a simple ma-
jority, we weighted the vote of each neigh-
bor by the reciprocal of its Euclidean dis-
tance. Because the cross-validation sam-
ples (the 10%) were selected randomly from
the training dataset, it was likely that at least
some of the patterns were very similar. Not
surprisingly, the cross validation accuracy
of the nearest-neighbor approach was the
highest of the three approaches we tried –
72%. If the test patterns were similarly cho-
sen from the same pool, we felt, this rather
simplistic approach even had a chance of
winning. So, this was our official entry.

The next two approaches were aimed to-
wards being in the middle of the leaders,
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not neccessarily win. However, the goal of
these two approaches was simplicity.

The neural network was chosen for sim-
plicity of implementation and retraining –
an operational implementation can simply
read the new weights from a file as is done
in Lakshmanan et al. (2007). The neu-
ral network was trained by backpropagation
with a learning rate of 0.1, momentum of 0.2
with 45% of the training samples (i.e. 45%
of the 90% used for training) used for early
stopping. There were 7 hidden nodes. The
neural network had a cross-validation accu-
racy of 68%.

The decision tree was chosen for human

readability. It is relatively simple to exam-
ine; if human operations need to make de-
cisions based on the output of the AI model,
it is helpful if they can develop a ”feel for
the model”, a process that is greatly aided
if the model is a simple, easy to understand
set of rules. The decision tree training was
the method of Quinlan (1993) with a prun-
ing threshold of 0.4 and stopping the split-
ting of nodes if it would result in leaves with
less than 20 instances. The tree obtained
is quite easy to comprehend – it is shown
below. This simple model had a cross-
validation accuracy of 68%.

clearair <= 0
| frozen <= 0
| | tmpc <= -3.549988: frozen (35.0/15.0)
| | tmpc > -3.549988: liquid (168.0/64.0)
| frozen > 0
| | speed <= 1.431182: liquid (47.0/19.0)
| | speed > 1.431182: frozen (436.0/83.0)
clearair > 0
| tmpc <= 1.575012
| | Z <= -25.6025: none (31.0/8.0)
| | Z > -25.6025
| | | frzl <= 853: none (30.0/9.0)
| | | frzl > 853
| | | | tmpc <= -7.324982: none (29.0/14.0)
| | | | tmpc > -7.324982: frozen (51.0/19.0)
| tmpc > 1.575012: liquid (20.0/9.0)

4. Results

The test data set was chosen from a dif-
ferent pool of instances than the training
data set (different radar scans). Hence, not
surprisingly, the nearest-neighbor approach
did not win. Its Pearson Skill Score (PSS)
on the test data set was 0.27. However,
as expected, the methods all came in the
middle of the pack, statistically not different
from the other entries. The neural network
approach had a PSS of 0.30 and the deci-
sion tree approach had a PSS of 0.28.

If the other entries are, as we expect,
considerably more complex, we suggest the
operation use of the decision tree above.
In our favor, we’d like to point out that
the complete human-readable description
of our rules fits onto half-a-page.

Looking at the resulting decision tree, it
is also quite clear that more training cases
are needed when the air is truly clear (”no
weather”) and the temperature is above
freezing – right now, all such cases are clas-
sified as ”liquid” which is clearly erroneous.

3



Acknowledgments

Funding for this research was provided
under NOAA-OU Cooperative Agreement
NA17RJ1227. The statements, findings,
conclusions, and recommendations are
those of the authors and do not necessar-
ily reflect the views of the National Severe
Storms Laboratory (NSSL) or the U.S. De-
partment of Commerce.

References

Lakshmanan, V., A. Fritz, T. Smith,
K. Hondl, and G. J. Stumpf, 2007: An au-
tomated technique to quality control radar
reflectivity data. J. Applied Meteorology ,
46, 288–305.

Quinlan, J. R., 1993: C4.5: Programs for
Machine Learning. Morgan, Kaufmann,
Los Altos.

Witten, I. and E. Frank, 2005: Data Mining.
Elsevier, 524 pp.

4


