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1. BACKGROUND 

1.1 Bridging the “middle ground” between 
medium range and climate forecasts 

     THORPEX addresses the influence of sub-
seasonal time-scales on high-impact forecasts out 
to two weeks, and thereby aspires to bridge the 
"middle ground" between medium range weather 
forecasting and climate prediction (Shapiro and 
Thorpe, 2004).  

     There are two aspects of climate prediction that 
are touched on in this paper, firstly, climate 
prediction on the monthly and seasonal scale and, 
secondly, climate prediction on the scale of many 
decades. 

     In Australia, the Bureau of Meteorology presently 
issues its Seasonal Climate Outlook (SCO) about 
two weeks prior to the three-month period for which 
the outlook is valid. The output of global climate 
models and statistical analyses of the influence of 
sea surface temperature anomalies over the Pacific 
and Indian Oceans on Australian seasonal climate  
(Appendix 1, Map A1.1, Plate A1.1, Figures A1.1a, 
b, c, d, e, f, g, h, I, j, k, l) are amongst the 
information utilised to generate the SCO, and work 
aimed at automatically generating worded seasonal 
climate outlooks (Stern, 2008a), and also worded 
monthly climate outlooks, is presently underway 
(Appendix 2, Figures A2.1 & A2.2), although the  
nature of the statistical relationships between 
predictors, such as the Southern Oscillation Index, 
and predictands,  such as rainfall, appears to have 
changed with the passing of the decades (Appendix 
2, Figures A2.3, A2.4 & A2.5). 

     It may be useful to bridge the two-week gap with 
a set of day-to-day forecasts out to 14 days, derived 
from the output of Numerical Weather Prediction 
(NWP) models. By way of underlining the 
importance of bridging this gap, the very same 
experimental forecasting system that automatically 
generates the worded seasonal climate outlooks, 
has been applied here to the task of generating the 
day-to-day forecasts out to 14 days (Figure 1). 
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1.2 The limits of “day-to-day” predictive 
capability 

     In 1999, the present author conducted an 
experiment (Stern, 1999) to establish the limits of 
day-to-day predictive capability for the southeast 
Australian city of Melbourne (Aust. Meteor. Mag., 
48:159-167). The results of the experiment, which 
involved verifying a set of quantitative forecasts for 
Melbourne out to 14 days, were presented. The 
data indicated that, even in 1999, it might have been 
possible to make useful statements about the 
expected average weather conditions over the 10-
day period between days 5 and 14.  
     In a subsequent (Stern, 2005) paper (Aust. 
Meteor. Mag., 54:203-211), the present author 
presented the results of a repeat of the earlier 
experiment, noting that the work of Lorenz 
suggested that there is a 15-day limit to day-to-day 
predictability of the atmosphere. The 2005 paper 
reported that the results obtained therein suggested 
emerging evidence that there may now be some 
day-to-day forecast skill out to Lorenz's (1963, 
1969a&b, 1993) 15-day limit, particularly for 
temperature. 

2. INTRODUCTION 
2.1 A “real-time” trial 

     A "real-time" trial (Stern, 2007) of a methodology 
utilised to generate Day-1 to Day-7 forecasts, by 
mechanically integrating (that is, combining) 
judgmental (human) and automated predictions, has 
been ongoing since 20 August 2005 (BAMS, June 
2007, 88:850-851).  

     The methodology has been demonstrated to 
result in an increase in the accuracy of forecasts for 
a broad range of weather elements (Table 1). 

2.2 Extending forecasts out to Day-10 

     In August 2006, the forecast period was 
extended to Day 10, by combining climatology and 
automated predictions. The encouraging 
performance of the Day-8 to Day-10 component 
was reported last year in a paper by the present 
author (Stern, 2008b) asking the question, "Does 
society benefit from very long range day-to-day 
weather forecasts?" (Symposium on Linkages 
among Societal Benefits, Prediction Systems and 
Process Studies for 1-14-day Weather Forecasts, 
New Orleans, Louisiana, USA, 23 Jan., 2008). 



     Figure 2 shows that the overall percentage 
variance of the observed weather explained by the 
forecast weather in a set of regression relationships 
between observed and forecast weather elements 
falls to about 10% by Day-8, and to about 5% by 
Day-10. 

3. PURPOSE 

3.1 “Real-time” calculations of 
evapotranspiration rates 

     In December 2008, a request was received to 
evaluate a model for “real-time” calculation of 
evapotaranspiration based on observed data.       
The subsequent investigation, “An evaluation of the 
South Australian evapotranspiration model using 
FAO-56 guidelines” by James Lannan (Internal 
Bureau of Meteorology Report, February 2009), 
found that the South Australian model had correctly 
followed FAO-56 guidelines in the calculation of 
evapotranspiration rates.  

3.2 Long-range forecasting of 
evapotranspiration rates 

     The industry had indicated that it would not only 
like to be provided with calculations of observed 
evapotranspiration, but also with forecasts of 
expected evapotranspiration out to several weeks.      
The reason for this requirement is that it would 
enable planning for future water purchases.  

3.3 Motivation derives from downward trend in 
rainfall 

     The motivation for this determination to plan 
derives, in part, from the observed long-term 
downward trend in rainfall over much of southern 
Australia, except during summer, which has been 
attributed to the strengthening and southward shift 
of the sub-tropical ridge (Appendix 3, Figures A3.1a, 
b, & c) and the corresponding retreat of the mid-
latitude westerlies. This may be attributed to the 
Southern Annular Mode (Gillett et al., 2006) (Figure 
A3.2) undergoing a long-term transformation 
towards its positive phase. 

3.4 Extending forecasts out to Day-14 

      Notwithstanding the encouraging performance 
of the Day-8 to Day-10 forecasts referred to earlier, 
some doubt exists about our capability at providing 
useful forecasts beyond Day-10. In January 2009, 
the system was extended so as to provide forecasts 
out to 14 days in order to assess that capability.  
The purpose of the present paper is to report on that 
assessment. 

4. RESULTS 

4.1 Ongoing trial of the Day-1 to Day-7 forecasts 

     Regarding the ongoing trial of the Day-1 to Day-7 
forecasts, generated by mechanically integrating 
(that is, combining) judgmental (human) and 

automated predictions, which has been ongoing 
since 20 August 2005: 

o The percentage increase (to 13 June 2009) 
in how often forecasts of whether or not 
there was going to be measurable 
precipitation at Melbourne was 6.4%, that 
is, mechanically integrating resulted in an 
enhanced performance at predicting 
whether or not there was going to be 
measurable precipitation at Melbourne; 
and, 

o The average decrease (to 13 June 2009) in 
the Mean Square Error of the minimum 
and maximum temperature forecasts for 
Melbourne was 0.80ºC, that is, 
mechanically integrating resulted in an 
enhanced performance at predicting 
minimum and maximum temperature at 
Melbourne. 

o The Critical Success Index for fog 
predictions for Melbourne (to 13 June 
2009) was increased to 16.3% (from 
14.3%), that is, mechanically integrating 
resulted in an enhanced performance at 
predicting fog at Melbourne. 

o The Critical Success Index for 
thunderstorm predictions for Melbourne (to 
13 June 2009) was increased to 17.2% 
(from 15.4%), that is, mechanically 
integrating resulted in an enhanced 
performance at predicting thunderstorms at 
Melbourne. 

4.2 The new trial of the Day-11 to Day-14 
forecasts 

     Regarding the new trial of the Day-11 to Day-14 
component of the forecasts, that has been ongoing 
since it was first generated on 18 January 2009: 

o The correlation coefficient (after 133 sets 
of forecasts) between the observed 
amounts of precipitation1 (expressed as a 
departure from normal at that time of the 
year of the square root of the amount 
observed) and the corresponding 
Quantitative Precipitation Forecasts 
(QPFs)2 (also expressed as a departure 
from normal at that time of the year of the 
square root of the amount forecast) was 

                                                 
1 The observed amount of precipitation is set equal 
to 0.05mm in the event of no measurable 
precipitation and an observation of distant 
precipitation, thunder, lightning, and/or funnel cloud, 
and to 0.1mm in the event of an observation of a 
trace of precipitation.  
2 The QPF is set equal to 0.05mm in the event of a 
forecast of no precipitation together with a forecast 
of “Possible Shower”. 



+0.144, the percentage variance of the 
observed amount of precipitation explained 
by the QPFs in a regression relationship 
between observed and forecast 
precipitation amount, being 2.06%, the “t” 
statistic associated with that regression 
relationship being +3.39, and the 
probability that this “t” statistic being at 
least +3.39 by chance being 0.09%. One 
may therefore be confident that, whilst the 
level of skill that was achieved during the 
trial at forecasting precipitation amount 
between Day-11 and Day-14 was relatively 
small, as illustrated in Figure 3, that skill 
was not achieved through chance. 

o The correlation coefficient between the 
observed Probabilities of Precipitation 
(PoPs)3 (expressed as a departure from 
normal) and the corresponding forecast 
PoPs4 (also expressed as a departure from 
normal) was +0.151, the percentage 
variance of the observed PoPs explained 
by the PoP Forecasts in a regression 
relationship between observed and 
forecast PoPs, being 2.29%, the “t” statistic 
associated with that regression relationship 
being +3.52, and the probability that this “t” 
statistic being at least +3.52 by chance 
being 0.02%. One may therefore be 
confident that, whilst the level of skill that 
was achieved during the trial at forecasting 
PoP between Day-11 and Day-14 was 
relatively small, as illustrated in Figure 4, 
that skill was not achieved through chance. 

o The correlation coefficient between the 
observed minimum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast minimum 
temperatures (also expressed as a 
departure from normal) was +0.067, the 
percentage variance of the observed 
minimum temperature explained by the 
minimum temperature forecasts in a 
regression relationship between observed 
and forecast minimum temperature, being 
0.45%, the “t” statistic associated with that 
regression relationship being +1.54, and 
the probability that the “t” statistic is of a 
magnitude no greater than +1.54 by 
chance being 6.20%. One may therefore 
be confident that, whilst the level of skill 

                                                 
3 The observed PoP is set equal to 100% in the 
event of measurable precipitation, to 50% in the 
event of a trace of precipitation, and to 25% in the 
event of distant precipitation. 
4 The observed PoP is set equal to 100% in the 
event of measurable precipitation, to 50% in the 
event of a trace of precipitation, and to 25% in the 
event of distant precipitation. 

that was achieved during the trial at 
forecasting minimum temperature between 
Day-11 and Day-14 was relatively small, as 
illustrated in Figure 5, that skill was not 
achieved through chance. 

o The correlation coefficient between the 
observed maximum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast maximum 
temperatures (also expressed as a 
departure from normal) was +0.141, the 
percentage variance of the observed 
maximum temperature explained by the 
maximum temperature forecasts in a 
regression relationship between observed 
and forecast maximum temperature, being 
1.97%, the “t” statistic associated with that 
regression relationship being +3.27, and 
the probability that this “t” statistic being at 
least +3.27 by chance being 0.06%. One 
may therefore be confident that, whilst the 
level of skill that was achieved during the 
trial at forecasting maximum temperature 
between Day-11 and Day-14 was relatively 
small, as illustrated in Figure 6, that skill 
was not achieved through chance. 

     Overall, across the four weather elements, the 
forecasting of which were verified, only about 2% of 
the observed variance was explained by the amount 
of precipitation, probability of precipitation, and 
maximum temperature forecasts, and less than 1% 
of the observed variance was explained by the 
minimum temperature forecasts.  However, one 
may be confident that the low level of skill achieved 
did not arise through chance.  

     Furthermore, it is also useful to observe that 
none of the four “t” statistics associated with the 
elements to be predicted - precipitation amount, 
precipitation probability, minimum temperature, and 
maximum temperature - was less than +1.54. The 
probability of this occurring by chance is only 
0.001%, suggesting that, whilst the overall level of 
skill that was achieved during the trial was relatively 
small, there is additional justification for asserting 
that the skill was not achieved through chance.  

     Now, specifically regarding the new trial of the 
Day-11 component of the forecasts, that has been 
ongoing since it was first generated on 18 January 
2009: 

o The correlation coefficient (after 133 
forecasts) between the observed amounts 
of precipitation (expressed as a departure 
from normal at that time of the year of the 
square root of the amount observed) and 
the corresponding Quantitative 
Precipitation Forecasts (QPFs) (also 
expressed as a departure from normal at 
that time of the year of the square root of 
the amount forecast) was +0.204, the 



percentage variance of the observed 
amount of precipitation explained by the 
QPFs in a regression relationship between 
observed and forecast precipitation 
amount, being 4.17%, the “t” statistic 
associated with that regression relationship 
being +2.39, and the probability that this “t” 
statistic being at least +2.39 by chance 
being 0.92%. One may therefore be 
confident that, whilst the level of skill that 
was achieved during the trial at forecasting 
precipitation amount for Day-11 was 
relatively small, that skill was not achieved 
through chance. 

o The correlation coefficient between the 
observed Probabilities of Precipitation 
(PoPs) (expressed as a departure from 
normal) and the corresponding forecast 
PoPs (also expressed as a departure from 
normal) was +0.248, the percentage 
variance of the observed PoPs explained 
by the PoP Forecasts in a regression 
relationship between observed and 
forecast PoPs, being 6.17%, the “t” statistic 
associated with that regression relationship 
being +2.94, and the probability that this “t” 
statistic being at least +2.94 by chance 
being 0.20%. One may therefore be 
confident that, whilst the level of skill that 
was achieved during the trial at forecasting 
PoP for Day-11 was relatively small, that 
skill was not achieved through chance. 

o The correlation coefficient between the 
observed minimum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast minimum 
temperatures (also expressed as a 
departure from normal) was +0.134, the 
percentage variance of the observed 
minimum temperature explained by the 
minimum temperature forecasts in a 
regression relationship between observed 
and forecast minimum temperature, being 
1.79%, the “t” statistic associated with that 
regression relationship being +1.54, and 
the probability that the “t” statistic is of a 
magnitude no greater than +1.54 by 
chance being 6.25%. One may therefore 
be confident that, whilst the level of skill 
that was achieved during the trial at 
forecasting minimum temperature for Day-
11 was relatively small, that skill was not 
achieved through chance. 

o The correlation coefficient between the 
observed maximum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast maximum 
temperatures (also expressed as a 
departure from normal) was +0.256, the 
percentage variance of the observed 

maximum temperature explained by the 
maximum temperature forecasts in a 
regression relationship between observed 
and forecast maximum temperature, being 
6.54%, the “t” statistic associated with that 
regression relationship being +2.98, and 
the probability that this “t” statistic being at 
least +2.98 by chance being 0.15%. One 
may therefore be confident that, whilst the 
level of skill that was achieved during the 
trial at forecasting maximum temperature 
for Day-11 was relatively small, that skill 
was not achieved through chance. 

     Now, specifically regarding the new trial of the 
Day-12 component of the forecasts, that has been 
ongoing since it was first generated on 18 January 
2009: 

o The correlation coefficient (after 133 
forecasts) between the observed amounts 
of precipitation (expressed as a departure 
from normal at that time of the year of the 
square root of the amount observed) and 
the corresponding Quantitative 
Precipitation Forecasts (QPFs) (also 
expressed as a departure from normal at 
that time of the year of the square root of 
the amount forecast) was +0.217, the 
percentage variance of the observed 
amount of precipitation explained by the 
QPFs in a regression relationship between 
observed and forecast precipitation 
amount, being 4.71%, the “t” statistic 
associated with that regression relationship 
being +2.55, and the probability that this “t” 
statistic being at least +2.55 by chance 
being 0.60%. One may therefore be 
confident that, whilst the level of skill that 
was achieved during the trial at forecasting 
precipitation amount for Day-12 was 
relatively small, that skill was not achieved 
through chance. 

o The correlation coefficient between the 
observed Probabilities of Precipitation 
(PoPs) (expressed as a departure from 
normal) and the corresponding forecast 
PoPs (also expressed as a departure from 
normal) was +0.236, the percentage 
variance of the observed PoPs explained 
by the PoP Forecasts in a regression 
relationship between observed and 
forecast PoPs, being 5.57%, the “t” statistic 
associated with that regression relationship 
being +2.78, and the probability that this “t” 
statistic being at least +2.78 by chance 
being 0.31%. One may therefore be 
confident that, whilst the level of skill that 
was achieved during the trial at forecasting 
PoP for Day-12 was relatively small, that 
skill was not achieved through chance. 



o The correlation coefficient between the 
observed minimum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast minimum 
temperatures (also expressed as a 
departure from normal) was +0.159, the 
percentage variance of the observed 
minimum temperature explained by the 
minimum temperature forecasts in a 
regression relationship between observed 
and forecast minimum temperature, being 
2.51%, the “t” statistic associated with that 
regression relationship being +1.84, and 
the probability that the “t” statistic is of a 
magnitude no greater than +1.84 by 
chance being 3.42%. One may therefore 
be confident that, whilst the level of skill 
that was achieved during the trial at 
forecasting minimum temperature for Day-
12 was relatively small, that skill was not 
achieved through chance. 

o The correlation coefficient between the 
observed maximum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast maximum 
temperatures (also expressed as a 
departure from normal) was +0.198, the 
percentage variance of the observed 
maximum temperature explained by the 
maximum temperature forecasts in a 
regression relationship between observed 
and forecast maximum temperature, being 
3.90%, the “t” statistic associated with that 
regression relationship being +2.31, and 
the probability that this “t” statistic being at 
least +2.31 by chance being 1.13%. One 
may therefore be confident that, whilst the 
level of skill that was achieved during the 
trial at forecasting maximum temperature 
for Day-12 was relatively small, that skill 
was not achieved through chance. 

     Now, specifically regarding the new trial of the 
Day-13 component of the forecasts, that has been 
ongoing since it was first generated on 18 January 
2009: 

o The correlation coefficient (after 133 
forecasts) between the observed amounts 
of precipitation (expressed as a departure 
from normal at that time of the year of the 
square root of the amount observed) and 
the corresponding Quantitative 
Precipitation Forecasts (QPFs) (also 
expressed as a departure from normal at 
that time of the year of the square root of 
the amount forecast) was +0.090, the 
percentage variance of the observed 
amount of precipitation explained by the 
QPFs in a regression relationship between 
observed and forecast precipitation 
amount, being 0.81%, the “t” statistic 

associated with that regression relationship 
being +1.03, and the probability that this “t” 
statistic being at least +1.03 by chance 
being 15.14%. One may therefore be 
justified in asserting that, not only was the 
level of skill that was achieved during the 
trial at forecasting precipitation amount for 
Day-13 relatively small, that skill could very 
well have been achieved through chance. 

o The correlation coefficient between the 
observed Probabilities of Precipitation 
(PoPs) (expressed as a departure from 
normal) and the corresponding forecast 
PoPs (also expressed as a departure from 
normal) was +0.072, the percentage 
variance of the observed PoPs explained 
by the PoP Forecasts in a regression 
relationship between observed and 
forecast PoPs, being 0.52%, the “t” statistic 
associated with that regression relationship 
being +0.41, and the probability that this “t” 
statistic being at least +0.41 by chance 
being 20.50%. One may therefore be 
justified in asserting that, not only was the 
level of skill that was achieved during the 
trial at forecasting PoP for Day-13 
relatively small, that skill could very well 
have been achieved through chance. 

o The correlation coefficient between the 
observed minimum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast minimum 
temperatures (also expressed as a 
departure from normal) was -0.021, the 
negative value suggesting that the Day-13 
minimum temperature forecasts possess 
no useful predictive skill. 

o The correlation coefficient between the 
observed maximum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast maximum 
temperatures (also expressed as a 
departure from normal) was +0.022, the 
percentage variance of the observed 
maximum temperature explained by the 
maximum temperature forecasts in a 
regression relationship between observed 
and forecast maximum temperature, being 
0.04%, the “t” statistic associated with that 
regression relationship being +0.26, and 
the probability that this “t” statistic being at 
least +0.26 by chance being 39.92%. One 
may therefore be justified in asserting that, 
not only was the level of skill that was 
achieved during the trial at forecasting 
maximum temperature for Day-13 relatively 
small, that skill could very well have been 
achieved through chance. 



     Now, specifically regarding the new trial of the 
Day-14 component of the forecasts, that has been 
ongoing since it was first generated on 18 January 
2009: 

o The correlation coefficient (after 133 
forecasts) between the observed amounts 
of precipitation (expressed as a departure 
from normal at that time of the year of the 
square root of the amount observed) and 
the corresponding Quantitative 
Precipitation Forecasts (QPFs) (also 
expressed as a departure from normal at 
that time of the year of the square root of 
the amount forecast) was +0.068, the 
percentage variance of the observed 
amount of precipitation explained by the 
QPFs in a regression relationship between 
observed and forecast precipitation 
amount, being 0.46%, the “t” statistic 
associated with that regression relationship 
being +0.78, and the probability that this “t” 
statistic being at least +0.78 by chance 
being 21.88%. One may therefore be 
justified in asserting that, not only was the 
level of skill that was achieved during the 
trial at forecasting precipitation amount for 
Day-14 relatively small, that skill could very 
well have been achieved through chance. 

o The correlation coefficient between the 
observed Probabilities of Precipitation 
(PoPs) (expressed as a departure from 
normal) and the corresponding forecast 
PoPs (also expressed as a departure from 
normal) was +0.073, the percentage 
variance of the observed PoPs explained 
by the PoP Forecasts in a regression 
relationship between observed and 
forecast PoPs, being 0.53%, the “t” statistic 
associated with that regression relationship 
being +0.40, and the probability that this “t” 
statistic being at least +0.40 by chance 
being 20.19%. One may therefore be 
justified in asserting that, not only was the 
level of skill that was achieved during the 
trial at forecasting PoP for Day-14 
relatively small, that skill could very well 
have been achieved through chance. 

o The correlation coefficient between the 
observed minimum temperatures 
(expressed as a departure from normal) 
and the corresponding forecast minimum 
temperatures (also expressed as a 
departure from normal) was -0.031, the 
negative value suggesting that the Day-14 
minimum temperature forecasts possess 
no useful predictive skill. 

o The correlation coefficient between the 
observed maximum temperatures 
(expressed as a departure from normal) 

and the corresponding forecast maximum 
temperatures (also expressed as a 
departure from normal) was +0.088, the 
percentage variance of the observed 
maximum temperature explained by the 
maximum temperature forecasts in a 
regression relationship between observed 
and forecast maximum temperature, being 
0.77%, the “t” statistic associated with that 
regression relationship being +1.01, and 
the probability that this “t” statistic being at 
least +1.01 by chance being 15.69%. One 
may therefore be justified in asserting that, 
not only was the level of skill that was 
achieved during the trial at forecasting 
maximum temperature for Day-14 relatively 
small, that skill could very well have been 
achieved through chance. 

4.3 Forecasting extreme events 

     During the period of the trial, Melbourne 
registered its all-time record maximum temperature 
of 46.4ºC on 7 February. The long-term average 
maximum temperature for the first 10 days of 
February is 26.7ºC, but the predictions 14 and 13 
days in advance were for below normal maximum 
temperatures of 25ºC and 26ºC, respectively. 
However, the predictions 12 and 11 days in 
advance were better, being for above normal 
maximum temperatures of 27ºC and 28ºC, 
respectively.  

     The coldest night during the trial period was 
29/30 April, when 2.9ºC was recorded. This was 
Melbourne’s coldest April night since 1957. The 
long-term average minimum temperature for the last 
10 nights of April is 11.3ºC, but the predictions 14, 
13, 12, and 11 days in advance, being 11ºC, 11ºC, 
11ºC, and 10ºC, respectively, all suggested that the 
overnight minima would only be very slightly below 
normal.  

     The wettest day during the trial period was 14 
March, when 20.4mm was recorded. Predictions 14, 
13, 12, and 11 days in advance all failed to indicate 
the possibility of such a heavy fall of rain occurring, 
being Nil, 0.05mm (“Possible Shower”), Nil, and Nil, 
respectively. 

5. CONCLUDING REMARKS 

     This paper has explored whether or not it is now 
time to bridge the two-week gap between medium 
range weather forecasting and climate prediction 
with a set of day-to-day forecasts out to 14 days, 
derived from an interpretation of the output of 
Numerical Weather Prediction (NWP) models.  

     With this in mind, the performance of a system, 
at predicting Day-11 to Day-14 amount and 
probability of precipitation, and at predicting Day 11 
to Day-14 minimum and maximum temperature, has 
been reported upon. It was found that although the 
overall skill displayed by the forecasts was small, 



that skill was not achieved by chance. However, 
there was little indication that extreme events could 
be forecast 11 to 14 days in advance. 

     Analysis of the performance on a day-to-day 
basis indicates that the overall skill achieved derives 
largely from the performance of the Day-11 and 
Day-12 predictions, and that there is little evidence 
of any skill being displayed by the Day-13 and Day-
14 predictions.      
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Table 1 The application of a methodology, that generates forecasts by mechanically integrating (that is, 
combining) judgmental (human) and automated predictions, has been has been demonstrated to result in an 
increase in the accuracy of forecasts for a broad range of weather elements (from Stern, 2007). 



 
Figure 1 The 14-Day forecast for Melbourne valid from Sat 21-3-2009 to Fri 3-4-2009. 

 
Figure 2 The overall performance of Day-1 to Day-7 forecasts generated by combining automated predictions 
with human predictions (20 August 2005 to 19 August 2007), and Day-8 to Day-10 forecasts generated by 
combining automated predictions with climate normals (20 August 2006 to 19 August 2007) as measured by the 
overall percentage variance of the observed weather elements explained by the forecast weather elements in a 
set of regression relationships between observed and forecast weather elements (from Stern, 2008). 
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Figure 3 The relationship between observed and forecast accumulated Day-11 to Day-14 rainfall. Although the 
relatively dry period during February was well forecast, as well as the wet periods during March, April, and early 
June, a substantial bias towards under-forecasting rainfall amount is also evident.  
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Figure 4 The relationship between observed and forecast average Day-11 to Day-14 PoP. The relationship is 
clearly quite weak, although there was some indication of the wet periods in March, April, and early June.  



Relationship between observed and forecast
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Figure 5 The relationship between observed and forecast average Day-11 to Day-14 minimum temperature. The 
relationship is clearly quite weak, although there is some suggestion of the relatively warm period leading up to 1-
Feb and also the cool period leading up to 30-Mar.  
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Figure 6 The relationship between observed and forecast average Day-11 to Day-14 maximum temperature. The 
relationship is clearly quite weak, although there is some suggestion of the relatively warm period leading up to 
18-Feb and also the cool period leading up to 7-Mar.  



APPENDIX 1.  THE INFLUENCE OF SEA SURFACE TEMPERATURE ANOMALIES OVER THE PACIFIC AN 
INDIAN OCEANS: A FOCUS UPON IMPACTS ON RAINFALL AT MELBOURNE AND BRISBANE.  
 
 

 
 
Map A1.1 Location map. 
 
 
 
 

Probability of a dry season at Melbourne = 

exp(-0.603+0.250*DMI+0.084*MEI 

-0.241*DMI*sinD-0.088*DMI*cosD-0.064*DMI*sin2D-0.042*DMI*cos2D 

-0.162*MEI*sinD-0.113*MEI*cosD-0.034*MEI*sin2D-0.052*MEI*cos2D)/ 

(1+ exp(-0.603+0.250*DMI+0.084*MEI 

-0.241*DMI*sinD-0.088*DMI*cosD-0.064*DMI*sin2D-0.042*DMI*cos2D 

-0.162*MEI*sinD-0.113*MEI*cosD-0.034*MEI*sin2D-0.052*MEI*cos2D)) 

 

Probability of a dry season at Brisbane = 

exp(-0.605+0.065*DMI+0.337*MEI 

-0.008*DMI*sinD+0.020*DMI*cosD+0.025*DMI*sin2D+0.051*DMI*cos2D 

-0.163*MEI*sinD+0.092*MEI*cosD+0.117*MEI*sin2D+0.135*MEI*cos2D)/ 

(1+ exp(-0.605+0.065*DMI+0.337*MEI 

-0.008*DMI*sinD+0.020*DMI*cosD+0.025*DMI*sin2D+0.051*DMI*cos2D 

-0.163*MEI*sinD+0.092*MEI*cosD+0.117*MEI*sin2D+0.135*MEI*cos2D)) 

 

Terms significant at the 5% level are highlighted in yellow, 

whilst terms significant at the 20% level are highlighted in green. 
 
Plate A1.1 The probability of dry seasons at Melbourne and Brisbane, where the Multivariate ENSO Index (MEI) 

and the Dipole Mode Index (DMI) are both expressed in terms of number of standard deviations’ 
departure from the norm, and sinD and cosD represent sin and cos of the day of the year of the mid-
point of the season’s first month. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1.1a During El Niño's, sinking and drying of the air over northern Australia often leads to drought over 
eastern Australia (Source: http://www.bom.gov.au/lam/climate/levelthree/analclim/elnino.htm#four). 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
Figure A1.1b During the Indian Ocean Dipole’s positive mode, the formation of rain-bearing northwest cloud 
bands is often discouraged (Ummenhofer et al., 2009), leading to dry conditions, especially over southeastern 
Australia (Sources: 
http://www.science.unsw.edu.au/news/indian-ocean-drought/ & http://www.jamstec.go.jp/frsgc/research/d1/iod/). 



 
 
Figure A1.1c The influence of ENSO upon the likelihood of a dry season at Melbourne during a strongly negative 
Indian Ocean Dipole event. 

 
 

 
 
Figure A1.1d The influence of ENSO upon the likelihood of a dry season at Melbourne during a moderately 
negative Indian Ocean Dipole event. 

 



 
 
Figure A1.1e The influence of ENSO upon the likelihood of a dry season at Melbourne during a neutral Indian 
Ocean Dipole event. 

 
 

 
 
Figure A1.1f The influence of ENSO upon the likelihood of a dry season at Melbourne during a moderately 
positive Indian Ocean Dipole event. 

 



 
 

Figure A1.1g The influence of ENSO upon the likelihood of a dry season at Melbourne during a strongly positive 
Indian Ocean Dipole event. 
 
 

 
 
Figure A1.1h The influence of ENSO upon the likelihood of a dry season at Brisbane during a strongly negative 
Indian Ocean Dipole event. 

 



 
 

Figure A1.1i The influence of ENSO upon the likelihood of a dry season at Brisbane during a moderately 
negative Indian Ocean Dipole event. 
 

 
 

Figure A.1.1j The influence of ENSO upon the likelihood of a dry season at Brisbane during a neutral Indian 
Ocean Dipole event. 
 



 
 
Figure A.1.1k The influence of ENSO upon the likelihood of a dry season at Brisbane during a moderately 
positive Indian Ocean Dipole event. 
 

 

 
 
Figure A.1.1l The influence of ENSO upon the likelihood of a dry season at Brisbane during a strongly positive 
Indian Ocean Dipole event.  
  
  
  
  
  
  
  
 
 



APPENDIX 2.  EXAMPLES OF AUTOMATICALLY GENERATED WORDED SEASONAL AND MONTHLY 
OUTLOOKS.  
 

 
Figure A2.1 An automatically generated worded seasonal climate outlook. 

 



 

 
 

Figure A2.2 An automatically generated worded monthly climate outlook. 



 
Figure A2.3 Monthly Correlation Coefficients (Southern Oscillation Index vs Melbourne Rainfall over all years of 
record 1876-2008) showing spring as the time of the year with the most positive correlation coefficients. 

 
Figure A2.4 Trend in the October Correlation Coefficient (Southern Oscillation Index vs Melbourne Rainfall), 
October being the month with the highest Correlation Coefficient over all years of record, showing a sharp decline 
over recent years. 

 
Figure A2.5 Monthly Correlation Coefficients (Southern Oscillation Index vs Melbourne Rainfall) over recent 
years 1979-2008, illustrating that the time of the year with the most positive correlation coefficients has shifted to 
the autumn-winter. 



APPENDIX 3 EXPLAINING THE OBSERVED DOWNWARD TREND IN SOUTHERN AUSTRALIAN RAINFALL  

 

 

 
Figure A3.1a The trend in Melbourne’s annual rainfall and mean annual MSL pressure. 

 
      

Figure A3.1b The monthly break down of the trend in Melbourne’s annual rainfall, the trend in MSL pressure, and 
the trend in the strength of the north-south MSL pressure gradient across Victoria. The percentage variance of the 
observed monthly rainfall trend explained by the pressure and pressure gradients in a regression relationship 
between the monthly rainfall trend and the corresponding trends in Melbourne MSL pressure and the north-south 
MSL pressure gradient is 38.6%. The “t” statistic associated with the Melbourne Mean Sea Level Pressure trend 
partial regression coefficient is –1.62 (the probability that this “t” statistic being as low as, or lower than, -1.62 by 
chance is 7.0%). The “t” statistic associated with the north-south MSL pressure gradient is +1.80 (the probability 
that this “t” statistic being as high as, or higher than, +1.80 by chance is 5.2%).  



 

 
Figure A3.1c The trend in the Mean Sea Level pressure over southwest Australia and its monthly break down. 

 

 

 

 

 
Figure A3.2 The MSL pressure distribution anomaly associated with the Southern Annular Mode during its 
positive phase (from Gillett et al., 2006). 

 

 

 

  


