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1. INTRODUCTION 

The numerical simulation of weather events has 
progressed to the point that mesoscale phenomena 
such as squall-lines and hurricanes are routinely 
forecasted.  The simulated reflectivity field and 
precipitation distribution have realistic features and 
spatial structure that can provide valuable guidance to 
forecasters on the mode of convective evolution 
(Weisman et al., 2008).  However, the traditional 
verification scores often do not reflect this improvement.  
Small errors in the position or timing of convective 
features result in both false alarms and missed events 
that dominate the 2x2 contingency table that serves as 
the foundation of traditional categorical verification 
scores (Wilks, 2006).  This problem is only exacerbated 
by tighter grid spacing.  Several traditional scores such 
as critical success index (CSI or threat score) and 
Gilbert skill score (GSS or equitable threat score) have 
been used for decades, but their utility is limited when it 
comes to diagnosing displacement error or an incorrect 
mode of convective organization.  

The spatial verification method Intercomparison 
Project, or ICP, was organized to explore better ways of 
evaluating high-resolution numerical model forecasts.  
The ICP stemmed from a verification workshop 
originally held in Boulder, CO.  The new methods often 
do not require one-to-one matches between forecast 
and observed events at the grid scale in order to give 
credit to a good forecast.  A literature review of the new 
methods is given by Gilleland et al. (2009).  In Gilleland 
et al. (2009), four main categories of methods are 
identified and described, a convention that is continued 
here: neighborhood, scale separation, feature-based 
and field deformation.  These categories are illustrated 
in Fig. 1.  

As part of the ICP, a set of idealized gridded 
precipitation forecasts with prescribed displacement, 
intensity, and frequency bias errors was created to 
demonstrate the capabilities of different forecast 
verification methods.  ICP participants were asked to 
apply their methods to the common set of fake and real 
forecasts.  This paper describes the test cases and 
summarizes results from the method inter-comparison.  

All methods could detect bias error, and the 
features-based and field deformation methods were also 
able to diagnose displacement error.  The best 
approach for capturing errors in aspect ratio was the 

field deformation approach.  For real cases, some new 
spatial verification methods agreed better with the 
subjective assessment of the forecasts than did the 
traditional verification statistics, confirming their ability to 
account for realistic spatial structure and close 
forecasts.  

 
Fig. 1. This is a pictorial representation of the four new 
verification categories explored in the ICP.  The panels 
are meant to show off unique aspects of each 
technique, not to illustrate any particular case. 

The reader may use this document alongside 
Gilleland et al. (2009) to determine which methods are 
appropriate for their needs, and then refer to more 
detailed papers on the individual methods, many of 
which form part of a Weather and Forecasting special 
collection on the Spatial Verification Methods 
Intercomparison Project (Casati, 2009; Davis et al., 
2009; Ebert 2009; Ebert and Gallus, 2009; Gilleland et 
al., 2009b; Keil and Craig, 2009; Lack et al., 2009; 
Lindstrom et al., 2009; Marzban and Sandgathe, 2009; 
Marzban et al., 2009; Mittermaier and Roberts, 2009; 
Nachamkin, 2009; Wernli et al., 2009). 

2. TEST CASES 

a) Geometric cases 
To explore the variety of new methods, we present 

simple geometric forecast and observation patterns that 
embody general forecast errors. The observation is 
named geom000 and the forecasts are geom001-

* Corresponding author address: David Ahijevych, 
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geom005 (Figure 2).  As with our more realistic cases, 
we assume these patterns represent 1-h accumulated 
rainfall at 24-hour lead time.  The precipitation zones 
are simple ellipses as defined in Ahijevych et al. (2009).  
They could also be thought of as idealized storm cells or 
mesoscale convective systems with a high intensity core 
embedded within a region of low intensity.   

 
Figure 2.  Five simple geometric cases derived to 
illustrate specific forecast errors.  In all panels, the 
forecasted feature (red) is positioned to the right of the 
observed feature (green).  Note, the forecast and 
observation features only overlap in geom005. 

There are no structural differences among the 
geometric features except area and aspect ratio.  All 
features are centered on the same y-coordinate; the 
ratio of the area enclosed by the high intensity core to 
the area enclosed by the low-intensity ellipse is always 
the same; the high-intensity core is always in the same 
right-of-center position relative to the low-intensity 
ellipse. 

The geometric forecasts illustrate three types of 
error: 1) displacement, 2) aspect ratio, and 3) frequency 
bias.  Knowledge of these errors could be useful for 
model development and improvement and could be 
informative for users of the forecasts.  The first two 
types of error are especially difficult to discern with 
traditional verification methods.  When the forecast and 
observed areas of precipitation do not overlap, as in 
geom001-geom004, then traditional scores such as CSI, 
GSS, and Hanssen-Kuipers (H-K) indicate no skill 

(Table 1). The geom003 case has even worse 
probability of false detection, H-K, HSS, and GSS than 
geom001, geom002, and geom004 because the larger 
forecast object results in more false alarms and fewer 
correct forecasted null events. 

Table 1. Traditional verification scores applied to 
geometric cases.  These statistics were calculated with 
the grid_stat tool, part of the Model Evaluation Tools 
(MET) verification package (NCAR, 2009). 

Traditional score geom1/
2/4 

geom00
3 

geom005 

accuracy 
multiplicative freq. bias 
mult. intensity bias 
RMSE 
bias-corrected RMSE 
correlation coefficient 
prob. of detection  
prob. of false detection 
false alarm ratio 
Hanssen-Kuipers (H-K) 
Threat score (CSI) 
Gilbert skill score  
Heidke skill score  

0.948 
1.000 
1.000 

3.514mm 
3.514mm 

-0.024 
0.000 
0.027 
1.000 

-0.027 
0.000 

-0.013 
-0.027 

0.870 
4.018 
4.022 

5.572mm 
5.451mm 

-0.050 
0.000 
0.107 
1.000 

-0.107 
0.000 

-0.021 
-0.043 

0.811 
8.034 
8.044 

6.875mm 
6.327mm 

0.203 
0.876 
0.191 
0.891 
0.685 
0.107 
0.084 
0.155 

 

The first two geometric cases, geom001 and 
geom002, represent pure displacement error.  The 
geom001 forecast feature is touching the observation, 
and the geom002 case is displaced further to the right.  
The forecast and observed features do not overlap in 
either case.  The spatial scale suggested by the map 
background suggests that both of these forecasts are 
very poor because 24-h forecasts of synoptic-sized 
precipitation zones are typically more skillful than this.  
However, the forecast value ultimately depends on the 
forecast application.   Even forecast geom002 might be 
valuable to some users as the shape, orientation, and 
distribution of intensity are perfect.   

Despite the obvious differences in the quality of 
these two forecasts, traditional verification metrics 
(Table 1) do not indicate any differences in 
performance.  In contrast, some of the new spatial 
verification methods are able to distinguish differences 
in performance for these two cases and quantify the 
displacement error.  

The geom004 case illustrates an error in aspect 
ratio. Although this case is similar to a simple rotation 
and displacement of the observed feature, the error is 
not quite that straightforward.  In particular, width of the 
forecast area is four times larger than the width of the 
observation area, and the forecast height is one-fourth 
the observed height.  

The final type of simple forecast error isolated in the 
geometric figures is frequency bias.  The geom003 and 
geom005 cases are both stretched in the x-dimension, 
making the forecast too large.  The displacement error 
is the same as in geom004 (125 points to the right).  
Traditional bias measures do pick up the difference in 
forecast and observed areas (multiplicative bias in Table 
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1), and the RMSE is largest for geom005, but the 
behavior of some other traditional scores is troubling 
when comparing these three cases (geom003-
geom005).  In particular, geom005 has a much higher 
forecast frequency bias than geom003 or geom004, but 
because it overlaps the observation, its false alarm ratio, 
H-K, GSS, and CSI scores are superior to the scores for 
all of the other geometric cases (Table 1).  To be fair, a 
hydrologist might actually prefer geom005, even if it is 
considered to be extremely poor by modelers and other 
users. Nevertheless, a larger CSI value does not 
indicate that the forecast is better overall, which is why 
these types of scores can be misleading when used in 
isolation.  For example, it is best practice to show bias 
alongside GSS and CSI whenever possible because 
GSS and CSI can easily be improved at the expense of 
increasing the bias (Baldwin and Kain, 2006). 

b) Perturbed cases 
In addition to the geometric shapes, some ICP 

participants evaluated a set of perturbed precipitation 
forecasts from a high resolution (2-km) numerical 
weather prediction model.  Starting with an artificial 
observed precipitation field based on the 24-h forecast 
of 1-hour accumulated precipitation provided by the 
Center for Analysis and Prediction of Storms (CAPS) 
valid on 1 June 2005 at 0000 UTC, perturbed forecasts 
were made by shifting the entire field to the right and 
downward by different amounts.  Additional details 
about the model configuration are in Kain et al. (2008).  
In the final two perturbed cases, the displacement error 
was held constant, but the intensity was multiplied by 
1.5 in pert006 and had 1.27 mm subtracted from it in 
perl007.  This paper does not describe the verification 
results for the seven perturbed cases, but interested 
readers can consult individual papers that evaluate 
them (Casati, 2009; Ebert 2009; Ebert and Gallus, 2009; 
Gilleland et al., 2009b; Keil and Craig, 2009; Lack et al., 
2009; Lindstrom et al., 2009; Marzban and Sandgathe, 
2009; Marzban et al., 2009; Mittermaier and Roberts, 
2009; Nachamkin, 2009; Wernli et al., 2009). 

c) Real cases 
For the realistic precipitation examples, we use nine 

cases that were originally presented to a panel of 
twenty-six scientists attending a workshop on spatial 
verification methods to obtain their subjective 
assessments of forecast performance.  The panel’s 
subjective scores are presented here as an alternative 
viewpoint, not a definitive assessment of forecast 
performance.  The panel looked at three different model 
forecasts of one-hour accumulated precipitation 
between forecast hours 23 and 24 and were asked to 
compare them to the observed precipitation from the 
stage II analysis (Lin and Mitchell, 2005).  They rated 
the models’ performance on a scale from 1 to 5, ranging 
from poor to excellent.  For fairness, the models were 
ordered randomly and unlabeled.  Figure 3 shows the 
observed precipitation fields in the same order as 
presented to the panel.  To conserve space we do not 
show the 27 accompanying forecasts (3 for each case), 

but they are available online at 
http://www.ral.ucar.edu/projects/icp/datacases.html. 

 
Figure 3.  Nine cases were chosen for the subjective 
evaluation.  These are the observed 1-h accumulated 
precipitation fields at 00 UTC for the dates indicated at 
the top of each panel.  For space considerations, the 
corresponding 27 model forecasts (9 days x 3 models) 
are not shown. 

The evaluators were not asked to consider the 
usefulness of the forecasts from the standpoint of any 
particular user (e.g., water-manager, farmer, SPC 
forecaster) or to focus on a particular region, but to 
subjectively evaluate the forecast as a whole.  
Afterwards, several of the panel members indicated that 
more guidance was needed in these areas, because the 
usefulness of a forecast depends greatly on the 
perceived needs of the user and the geographical area 
of concern; sometimes a model did well in one region 
and poorly in another.  But in order to keep it simple, 
participants were asked to simply give an overall 
impression of the models’ skill and were left to 
themselves to decide what mattered most.  

Although we cycled through the nine cases twice to 
increase the stability of the overall responses and to 
assess the natural variability from one trial to the next, 
several aspects of our survey added uncertainty to the 
results.  First, the panel members had varying 
professional backgrounds, including meteorologists, 
statisticians, and software engineers.  Meteorologists 
were more likely to consider realistic depictions of 
mesoscale structure (such as in the stratiform 
precipitation area of a mesoscale convective system) as 
an important criterion defining a “good” forecast, and 
may have focused on different features than scientists 
with a pure mathematical background.  Participants 
were not asked to focus on a particular region, nor were 
examples of a “good” forecast provided.   
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The three forecast models that provided 
precipitation forecasts were run for the 2005 Spring 
Program sponsored by the Storm Prediction Center and 
National Severe Storms Laboratory (SPC/NSSL) 
(http://www.nssl.noaa.gov/projects/hwt/sp2005.html).  
Two of the three numerical models (provided by NCAR 
and NCEP Environmental Modeling Center [EMC]) were 
run on a 4-km grid, while one was run on a 2-km grid 
(CAPS), denoted wrf4ncar, wrf4ncep, and wrf2caps, 
respectively.  Additional information on the model 
configurations can be found in Kain et al. (2008).  All 
forecasts and observations were interpolated onto the 
same ~4 km grid as the geometric cases.  For space 
considerations, we do not present them here, but all the 
forecasts are available online at 
http://www.ral.ucar.edu/projects/icp/.  Later, we focus on 
two cases from the perspective of each new verification 
method category and compare them to the subjective 
scores and traditional metrics.  

3.  APPLICATION OF NEW METHODS FOR 
GEOMETRIC CASES 

We now apply the new verification methods to the 
set of geometric cases to ascertain whether they can 

correctly diagnose the applied errors.  Specifically, we 
ask:  

• Does geom001 score better than geom002 and is 
the error correctly attributed to displacement? 

• Can the method detect the aspect ratio error in 
geom004?  

• Can the method discriminate between the high 
frequency bias in geom003 and the very-high bias 
in geom005?  How about the equal displacement of 
the feature centroids?  

Traditional methods do not diagnose displacement or 
structure errors and with a single intensity threshold, 
they also do not provide information about performance 
on different spatial scales. Table 2 summarizes the 
answers to these questions for the geometric cases, 
which are discussed in greater detail below.  The paper 
of Gilleland et al (2009) answers a different set of 
questions that address the nature of the information 
provided by the various spatial verification methods. 

 

Table 2. This table indicates which categories of verification method clearly diagnose the types of error illustrated in 
the geometric cases.  A method may be sensitive to a type of error, but not clearly diagnose it. 

 Method Category 

Error type geometric 
case 

Neighborhood Scale-separation Feature based Field deformation 

displacement 

geom001 

geom002 

Indirectly No Yes Yes 

frequency bias 

geom003 

geom005 

Yes Indirectly Yes Yes 

aspect ratio – “quasi-
rotation” 

geom004 

No No possible Yes 

http://www.nssl.noaa.gov/projects/hwt/sp2005.html
http://www.ral.ucar.edu/projects/icp/


a) Neighborhood methods applied to geometric 
cases 

In general, the neighborhood methods look in 
progressively larger space-time neighborhoods about 
each grid point and compare the set of probabilistic, 
continuous or categorical values from the forecast to the 
observation (Gilleland et al., 2009; Ebert 2009).  For our 
cases, the time neighborhood is ignored.   

While they do not usually provide direct information 
on feature displacement and aspect ratio, neighborhood 
methods are sensitive to these errors.  For example, 
with the simple upscaling method, Ebert (2009) found 
that the forecast with small displacement error 
(geom001) showed skill greater than zero for any 
neighborhood larger than the native grid spacing, but for 
geom002, there was no skill for any reasonably-sized 
neighborhood.  The same was found by Mittermaier and 
Roberts (2009) for Fractional Skill Score (FSS; Roberts 
and Lean, 2008), a method that compares forecasted 
and observed fractional coverage of events within 
neighborhoods.  Mittermaier notes, however, that if an 
unreasonably-large neighborhood is used, the skill does 
reach perfection for unbiased forecasts such as 
geom001 or geom002.  Using FSS, Mittermaier and 
Roberts (2009) show that the geom001 forecast has 
skill at scales above 200 km.  Aptly, this neighborhood 
size corresponds exactly to the prescribed separation 
between the two objects.   

The incorrect aspect ratio and displacement found 
in geom004 produces a FSS profile that reaches skillful 
values at 550 km, but one cannot easily tell whether a 
change in score is due to displacement, rotation or both.   
The forecasts with high frequency biases (geom003 and 
geom005) do not exhibit useful skill for any scale 
examined, but the FSS is lower for geom005 at larger 
scales relative to geom003.  The geom005 case has 
slightly greater FSS at the smaller scales because of the 
forecast-observed area overlap.  Ebert (2009) applies 
additional neighborhood methods to the geometric 
cases including Multi-event contingency table (Atger, 
2001) and practically perfect hindcast (Brooks et al., 
1998), with similar results. 

While the composite method of Nachamkin (2009) 
is categorized as a features-based approach by 
Gilleland et al. (2009), it adopts a neighborhood-like 
strategy to measure performance at different scales.  
Nachamkin (2009) uses a metric called the conditional 
bias difference to assess the difference between 
forecast and observation at different neighborhood sizes 
centered on contiguous regions of precipitation.  As 
expected, the geom001 forecast performed better than 
geom002 at all neighborhood sizes, though it performed 
poorly for the smallest neighborhoods.  The conditional 
bias difference also indicated that geom003 was the 
worst forecast at intermediate distances, but for large 
distances geom005 was worst.  Because of its overlap 
with the observation, geom005 was best in the smallest 
neighborhoods.  As the neighborhood gets smaller, the 
results converge to traditional metrics, 

In summary, the neighborhood methods indicate 
that forecast geom001 is more skillful than geom002 as 
desired.  The method does not explicitly characterize 
error as displacement, amplitude, or structure, so the 
aspect ratio error in geom004 is difficult to diagnose.  
The bias errors in geom003 and geom005 are also 
difficult to diagnose using the particular neighborhood 
scores shown in Ebert (2009); however, computing and 
displaying the neighborhood frequency bias in addition 
to the GSS addresses this problem. 

b)  Scale-separation applied to geometric cases 
Casati (2009) revisits the Intensity-scale separation 

(IS) method introduced in Casati et al. (2004) and 
applies it to the geometric cases of the ICP.  She uses 
wavelets to decompose the error between the observed 
binary field and the forecast binary field at different 
intensity thresholds.  Following her method*, we show 
the average IS skill scores for geom001 and geom002 
using a precipitation threshold of greater than zero 
(Figure 4).  For geom001, the error is concentrated at a 
spatial scale of 128 km because the width of the 
features is close to 128 km and so is the displacement .  
But for geom002, the error shifts toward the 512-km and 
1024-km scales, which reflects the larger displacement 
(~800km).  For the geom003 and geom005 cases, in 
which the forecast area is too large, the skill is reduced 
for the largest scale (2048 km), with a larger drop for the 
severe over-forecast in geom005.  While the IS skill 
score is certainly sensitive to the displacement and 
frequency bias errors illustrated in the geometric cases, 
it does not tell how much of the total error is caused by 
each error type.  However, the frequency bias errors do 
have prominent signatures in the wavelet energy 
spectra (Casati, 2009).  The incorrect aspect ratio of 
geom004 is not picked up clearly by either the IS 
method nor the energy spectra.  

                                                 

* These average scores were calculated from a set of 64 
overlapping, but randomly positioned tiles 
encompassing the features of interest.  The “tiling” 
method reduces the variability associated with the 
starting position of the wavelet.  A more rigorous 
approach was applied by Casati et al. (2009) in which all 
possible tile positions were used.  That is why her Fig. 7 
has slightly different IS skill scores using the low 
intensity threshold. 
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Figure 4.  This figure shows the IS skill scores for 
geom001 (black) and geom002 (red).  As described in 
Casati (2009), the difference field between the binary 
forecast and observation for non-zero precipitation was 
decomposed into its constituent spatial scales.  For the 
case with the small displacement error (geom001), the 
low IS skill scores are concentrated at a wavelet width 
of 128 km, while in geom002, low IS skill scores spread 
to larger spatial scales, consistent with the larger 
displacement error. 

Similar to the spectral decomposition method 
(Harris et al., 2001), the variogram method (Marzban 
and Sandgathe, 2009; Marzban et al., 2009) describes 
global aspects of the precipitation field.  Essentially, 
variograms measure texture as a function of scale.  For 
sparse fields such as precipitation, the variogram results 
depend on whether or not zero-pixels are included in the 
analysis.  For example, the displacement, rotation, and 
frequency errors are only evident if zero pixels are 
included (Marzban et al., 2009).  Moreover, if the zero 
pixels are included, the frequency biases of geom003 
and geom005 are very prominent.   

Scale-separation methods exhibit similar behavior 
to the neighborhood methods with the geometric cases.  
Both types of methods are sensitive to displacement 
error, but they do not directly measure it.  The scale 
separation methods are also not sensitive to the aspect-
ratio error.  Using this strategy, the stretching in the 
longitude-dimension for geom003-geom005 would show 
up as different spatial fluctuation in the longitudinal 
direction.  Like the neighborhood methods, the scale 
separation methods can be sensitive to the position of 
the precipitation within the domain; Casati (2009) 
suggests a tiling method in which the statistics are 
calculated within a square subdomain that is shifted 
grid-point by grid-point around the perimeter of the 
domain.  The statistics are calculated at each possible 
position and then averaged.  This methodology is 
analogous to the neighborhood approach, where the 
best practice is to calculate statistics at each possible 
grid point instead of using every n-th grid point (i.e. 
overlapping neighborhoods, not discrete).  

c) Features-based methods applied to geometric 
cases 

In general, the features-based methods (Gilleland 
et al., 2009) divide a gridded field into objects by 
identifying clusters of points above an intensity 
threshold.  Some methods apply a smoothing operator 
or band-pass filter before identifying the features.  The 
choice of smoothing operator and threshold will 
determine what type of objects are defined, whether 
they be small, isolated high intensity rain cores, or larger 
mesoscale precipitation shields.  In the case of cluster 
analysis (Marzban et al., 2009), the gridpoints are 
grouped into a prescribed number of clusters.  This 
number determines the relevant spatial scale.   

In the geometric cases, depending on the 
threshold, either the high-intensity or the low-intensity 
ellipses represent the objects.  As long as the forecast 
ellipse is matched to the observed ellipse, attributes 
such as position, size and shape can be compared.  
Beyond a critical distance, no match occurs and hence 
no diagnostic information is derived. 

The SAL quality measure (Wernli et al. 2008), 
which separately considers aspects of structure (S), 
amplitude (A), and location (L), captures the location 
error and frequency bias in the geometric and perturbed 
cases (Wernli et al., 2009).  It does not provide an 
actual distance, but instead it gives a normalized 
location error (L), with higher values associated with 
greater displacement error.  For geom001, L = 0.11, and 
for geom002, L = 0.39.  The frequency bias of forecasts 
geom003 and geom005 is reflected in the S and A 
terms, as the forecast objects are both too large (S), 
and the domain-average precipitation is too high (A) 
(Wernli et al., 2009).  SAL does not capture the aspect 
ratio error in geom004. 

Similar to SAL, the contiguous rain area (CRA) 
method (Ebert and Gallus, 2009) treats displacement, 
volume (amplitude), and structure (pattern) as separate 
components of error, but for matched objects in the 
forecast and observed fields.  The CRA method gave 
very intuitive results for the combinations of 
displacement error and frequency bias in geom001-
geom003.  The proportion of error attributed to pattern 
was largest (63%) in geom004, the case with incorrect 
aspect ratio; but geom003 and geom005 also had 
pattern error (34% and 41%, respectively) because of 
their stretching in the x-dimension. 

The Method for Object-based Diagnostic Evaluation 
(MODE; Davis et al., 2009) looks at characteristics of 
the objects such as location, area, intensity, curvature, 
and orientation, and attempts to match objects in the 
forecast and observed field based on these 
characteristics.  MODE diagnoses the displacement 
error and frequency bias of each forecast object in the 
geometric cases perfectly (Davis et al., 2009).  MODE 
can evaluate the distribution of intensity values (based 
on percentiles) within an object, but not the relative 
position of those intensity peaks.  Therefore, the aspect 
error in geom004 is diagnosed as a simple rotation.  
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The position of the high-intensity ellipse within the low-
intensity ellipse is not one of the matching criteria.  

The Procrustes object-oriented verification scheme 
originally described by Micheas et al. (2007) is similar to 
MODE in that forecast and observed objects are 
matched and merged based on their attributes.  
Moreover, prior to matching, the objects may be 
identified using a filter in Fourier space as opposed to 
physical space (Lack et al., 2009).  The quality of the 
forecast is determined by the fraction of matched 
objects, and the amount of displacement, dilation, and 
rotation that is necessary to better match the forecast 
object to the observed object.  Lack et al. (2009) show 
that the Procrustes method measures the right amount 
of displacement and frequency bias in the geometric 
cases.  As in MODE, the location of the higher intensity 
ellipse within the low-intensity ellipse is not a factor 
because a single intensity threshold is used to identify 
the features.  Therefore, the dilation error in geom004 is 
indistinguishable from rotation error.  

d) Field deformation methods applied to 
geometric cases 

Field deformation methods attempt to morph the 
forecast and/or observation fields to look like each 
other, minimizing a score such as RMSE.  They can 
quantify the overall dissimilarity between the forecast 
field and the observation field.  As long as the search 
radius is large compared to the displacement error, the 
error in the forecast objects is consistent with a 
subjective evaluation of the error.  Interestingly, the field 
deformation method is the only one to truly capture the 
aspect ratio error in geom004.  Other methods rely on a 
single intensity threshold and treat the case as simple 
rotation.  As seen in Figure 5, the field deformation 
vectors clearly attribute the error to dilation and 
contraction, not rotation.  This figure comes from 
Gilleland et al. (2009b), a paper in which the image 
warping technique is applied to the geometric cases.   

 
Figure 5.  This figure, adapted from Gilleland et al. 
(2009b), shows the forecast and observation field for the 
geom004 case (top panel).  The image warping 
technique (Gilleland et al., 2009b) attempts to morph the 
forecast to the observation, and the resultant 
displacement vectors are shown in the bottom panel  
with the original forecast field.  The aspect ratio error is 
clearly illustrated by the deformation in the displacement 
vector field. 

Keil and Craig (2009) use a pyramidal matching 
algorithm to derive the displacement vector field.  
Contributions from observation and forecast space are 
averaged to give a scalar amplitude and displacement 
score.  The two components are combined into a single 
displacement and amplitude score (DAS).  For geom001 
the contribution of the displacement component 
dominates the DAS, while for geom002, when the 
feature is outside the search distance, only the 
amplitude error contributes.  The geom002 forecast is 
not close enough to the observed precipitation area to 
be considered the same object, so it is treated as a false 
alarm, and the displacement vectors attempt to remove 
it by shrinking its area. 

Marzban and Sandgathe (2009b) apply optical flow 
to a set of forecast objects very similar to geom001 and 
geom002.  They show that small displacement errors 
(smaller than the scale of interest) have very simple and 
easy to understand optical flow fields.   As in the DAS 
method of Keil and Craig (2009), as the forecast object 
gets further from the observation and beyond the scale 
of interest, the optical flow vectors tend to converge 
about the forecast object in an attempt to shrink the 
false alarm.  About the observed object, the optical flow 
diverges in an attempt to expand forecasted 
precipitation where the feature was missed.  

The Forecast Quality Index (FQI; Venogopal et al., 
2005) straddles the features-based and field-
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deformation categories.  It does not generate a 
displacement vector field, but it quantifies the location 
error in a global sense.  The numerator of the FQI is the 
partial Hausdorff distance (PHD), a scalar that quantifies 
the distance between binary images.  The PHDs for 
geom001 and geom002 (41 and 191 grid pts) are 
slightly less than the actual displacements, but a slight 
modification of the PHD formulation (using the 100th 
percentile instead of the 75th) results in perfect 
diagnosis of the displacement.  The frequency bias in 
geom003 and geom005 is not detected because without 
zero pixels, the mean and variance are perfect for the 
geometric forecasts.   FQI can be altered to use all 
pixels, but this alternate formulation may not be desired 
because a) it is sensitive to the amount of empty space 
in the domain, and b) the PHD is already sensitive to 
aspect ratio and frequency bias.  For example, in cases 
geom003-geom005, where the forecast objects are all 
displaced by 125 points, the PHDs (based on the 75th 
percentile) are 145, 141, and 186 points, each distance 
reflecting the 125-point rightward shift, plus stretching in 
the x-dimension.  

4.  APPLYING NEW METHODS TO REAL CASES 

a) Traditional and subjective scores for real cases 
Real precipitation forecasts from nine days were 

shown to a panel of experts and were subjectively 
evaluated.  First some classic verification scores are 
presented.  We will focus on the wrf4ncep model in this 
paper, but additional cases and model comparisons are 
found in accompanying papers in the ICP special 
collection (Casati, 2009; Davis et al., 2009; Ebert 2009; 
Ebert and Gallus, 2009; Gilleland et al., 2009b; Keil and 
Craig, 2009; Lack et al., 2009; Lindstrom et al., 2009; 
Marzban and Sandgathe, 2009; Marzban et al., 2009; 
Mittermaier and Roberts, 2009; Nachamkin, 2009; 
Wernli et al., 2009).  The traditional scores for the 
wrf4ncep model for all nine days are shown in Figure 6.  
All three models tended to overdo precipitation, with 
wrf4ncep being most prone to over-prediction.  Except 
for 25 May, the frequency bias was usually over 2 for a 
threshold of 6 mm.   

 
Figure 6. Traditional verification scores for nine 24-h 
forecasts of 1-h accumulated precipitation from the 
wrf4ncep model.  The metrics include frequency bias 
and GSS for a precipitation threshold of 6 mm (top row) 
and the Pearson correlation coefficient and RMSE (mm) 
(bottom row).  95% bootstrap confidence intervals were 
calculated using the percentile interval method in the 
MET package (NCAR, 2009).  The bootstrap replicate 
sample size was 0.8 times the number of matched data 
pairs (0.8 x 601 x 501), and the data were sampled 
1000 times with replacement. 

 

 
Figure 7.  Mean subjective scores for the wrf4ncep 
model.  Twenty-four participants rated nine forecasts on 
a scale from 1 to 5 with 1 being poor and 5 being 
excellent.  The group evaluated the cases twice and 
these scores are based on the 2-trial mean.  The 
capped vertical bars are the +/-2 standard error, or 95% 
confidence interval, for the true mean assuming the 
sample mean is normally distributed.   

As expected with small grid spacing, the traditional 
scores are quite low (Figure 6) with GSS< 0.1 for a 
threshold of 6 mm.  Precise prediction of convective 
precipitation is nearly impossible 24 hours in advance 
and these low scores reflect that difficulty.  At thresholds 
of 6 mm and above, the wrf4ncep forecasts valid on 18 
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May, 1 June and 4 June all have negative GSS, 
suggesting no skill, but their subjective scores are quite 
variable (Figure 7).  Looking exclusively at 1 Jun and 4 
Jun, the 2-trial mean subjective score for 4 Jun is 
significantly lower than the score for 1 Jun (with a 
significance level of less than 0.0001) based on a paired 
two-tail student-t test with 23 degrees of freedom.  The 
panel members were not asked to explain why they 
rated the 1 June wrf4ncep forecast better than the 4 
June forecast, but these positive aspects of the 1 June 
forecast could play a role: the 1 June forecast captured 
the overall shape of the long band of convective 
precipitation curling from North Dakota to Texas (Figure 
8) and the heavy precipitation cores in the Texas 
panhandle were forecast close to observed precipitation 
cores.  On the other hand, for 4 June, one’s attention is 
drawn to the strong north-south band of forecasted 
precipitation in Missouri and Arkansas; it is obviously a 
false alarm.  Based on the subjective reviews, one might 
consider the 1 Jun forecast superior to the 4 Jun 
forecast, but the GSS says both forecasts are equally 
poor (Figure 6).  Do the new verification methods make 
a distinction?  

 
Figure 1.  Stage II 1-h precipitation observation (left) 
and 24-h wrf4ncep forecast (right) valid at 00 UTC on 1 
Jun and 4 Jun 2005. 

b) Neighborhood methods applied to real cases 
According to the neighborhood methods applied by 

Ebert (2009), the 1 Jun case scored better than the 4 
Jun case.  Using the FSS, Mittermaier and Roberts 
(2009) showed that for 1 Jun, the useful distance scale 
extended down to 60 km and 370 km for thresholds of 1 
mm and 32 mm, respectively.  For 4 Jun, the forecast 
was not useful at any threshold or neighborhood size 
tested.   

Using the composite method Nachamkin (2009) 
found wrf4ncep had the best conditional bias difference 
(CBD) for high precipitation thresholds (12.7 mm) and 
neighborhoods less than 124 km.  At larger 
neighborhoods, wrf4ncep’s tendency to predict too 
much precipitation overwhelmed the CBD and its 
performance dropped below the other two models.  

Indeed, the wrf4ncep model had very good spatial 
forecasts for a few high impact events, such as on 25 
May and 3 Jun (not shown), but generally predicted too 
much precipitation.   

c) Scale-separation applied to real cases 
The IS method was applied in aggregate to the nine 

real cases (Casati, 2009).  No significant difference was 
found among the three models in terms of IS score.  
Differences were more apparent in the energy at each 
spatial scale (Casati, 2009).  All three models over-
forecasted moderate to high intensity precipitation (2-16 
mm) across all spatial scales, but the wrf4ncep bias was 
worse for small spatial scales (Casati, 2009).   

Marzban and Sandgathe (2009) used variograms to 
assess the texture of the 1 Jun and 4 Jun wrf4ncep 
forecasts.  A forecast that has the same texture as the 
observations will have a similar variogram.  It can be 
plotted as a function of scale.  On 1 Jun, the wrf4ncep 
variogram is fairly close to the observations except at 
the high end of the scale spectrum.  At the largest 
distances (above 2700 km), the 4 Jun variogram is 
closer to the observations.  The subjective scores were 
better for 1 Jun.  If the experts were concerned about 
texture, this suggests that variogram distances above 
2700 km were not important to the experts.  It could be 
argued that performance above this scale is irrelevant 
since it is too large to be of much use. 

d) Features methods applied to real cases 
In terms of the features-based methods, the 

precipitation overforecasting was reflected in too many 
forecast objects, too large matched forecast objects, 
and too intense matched forecast objects (MODE, 
Procrustes, CRA).  Some investigators focused on the 
nine cases from the subjective evaluation, while others 
expanded their analysis to a superset of 32 cases from 
the time period (MODE [Davis et al., 2009] and Cluster 
Analysis [Marzban et al., 2008]).  Overall model 
performance ranking depended on the method used and 
the spatial scale of interest.  Cluster analysis on a 
similar dataset by Marzban et al. (2008) showed that 
wrf2caps was best, followed by wrf4ncep, and finally 
wrf4ncar.  The Procrustes feature-based method (Lack 
et al., 2009) suggested the largest scales were 
predicted uniformly well by all three models, but 
wrf4ncar and wrf2caps were better than wrf4ncep at the 
small scales.  Davis et al. (2009) looked at 32 cases 
with MODE and found that the wrf4ncar model 
performed better than the wrf4ncep model based on the 
MMIF† metric, whereas models performed nearly 

                                                 

† The primary variable used for Davis et al.’s (2009) 
MODE evaluation was “total interest” derived from a 
fuzzy-logic algorithm that compared several attributes of 
forecast and observed rain features.  The median of the 
set of maximum interest values for forecast or observed 
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identically based on the MMIO metric.  The primary 
reason for the poorer MODE performance of the 
wrf4ncep model was a few forecasts with copious false 
alarms.  

Do the features methods prefer the 1 Jun wrf4ncep 
forecast over 4 Jun?  In most respects, the answer is 
yes.   For example, the MODE-based MMI was clearly 
higher for 1 Jun (Davis et al., 2009).  The CSI curve in 
Marzban et al.’s (2009) cluster analysis for 1 Jun was 
slightly higher than 4 Jun for all cluster sizes, suggesting 
1 Jun was better—although Marzban et al. (2009) note 
this difference may not be statistically significant.  Using 
the Procrustes method, Lack et al. (2009) found that the 
total penalty and the average penalty for matching 
convective segments and cells was consistently less in 
the 1 Jun forecast than in the 4 Jun forecast.  But for the 
largest (cluster) scale, 4 Jun had smaller penalties on 
average.  

e) Field deformation methods applied to real 
cases 

For field deformation methods applied to individual 
cases, results depended on the precipitation threshold.  
Using a threshold of greater than zero, the FQI 
(Venogopal et al., 2005) was clearly better for the 1 Jun 
wrf4ncep forecast in terms of both its distance and 
intensity components.  The optical flow technique (DAS; 
Keil and Craig, 2009) gives a better score on 4 June 
(1.37) than on 1 June (1.40) for a threshold of 1.52 mm, 
evidently a result of the large over-prediction of heavy 
precipitation along the front (Figure 8).  Focusing on 
more intense convection (10 mm), the DAS diverges  
even further from the subjective ranking.  On the other 
hand, a lower threshold of 1 mm results in slightly better 
DAS for 1 June (1.22) than for 4 June (1.26), in line with 
the subjective ranking.  This suggests the panel of 
experts may have been more concerned with low-
intensity rain areas on these two dates.   

Marzban et al. (2009) compared all cases together 
and summarized the results of the optical flow technique 
with joint histograms of displacement vector magnitude 
and direction.  No systematic shift was evident in the 
joint histograms but analysis of individual cases 
indicated that the wrf2caps and wrf4ncar models had 
similar performance and the wrf4ncep forecast was 
sometimes much better or worse (i.e., its relative 
performance was more variable). 

5.  SUMMARY 

We constructed simple precipitation forecasts to 
which we applied some of the latest spatial verification 
methods.  These simple geometric cases illustrated 
potential problems with traditional scoring metrics.  
Displacement error was easily diagnosed by the feature-
based and field deformation methods, but the signal 

                                                                            Upon examining the results from the subjective 
evaluation, it became clear that a more rigorous 
experiment with more controlled parameters would be 
preferred. A more robust evaluation with a panel of 
experts would undoubtedly require pinning down the 

objects (denoted MMIF or MMIO, respectively) defined a 
single metric of forecast quality. 

was not as clear-cut in the neighborhood and scale 
separation methods, sometimes getting mixed with 
frequency bias error.  Errors in aspect ratio were 
reflected in some of the scores for neighborhood and 
scale separation approaches, but were correctly 
diagnosed by only a couple of specialized configurations 
of the features methods.  Typically, the features-based 
methods treat aspect ratio error as rotation and/or 
displacement.  The field deformation methods seemed 
to have the best ability to directly measure errors in 
aspect ratio.  

For the more realistic cases that we tested, each 
method provided different aspects of forecast quality.  
Compared to the subjective scores, the traditional 
approaches were particularly insensitive to changes in 
perceived forecast quality at moderate hourly 
precipitation thresholds (≥ 6 mm).  In these cases, the 
newer feature-based, neighborhood, and field 
deformation methods appeared to give credit for close 
forecasts of precipitation features or resemblance of 
overall texture (scale separation methods and 
variograms), even though the forecasts did not line up 
exactly with the observations.  This was particularly 
evident in the comparison of the 1 Jun and 4 Jun 
forecasts from the wrf4ncep model.  The overall 1 Jun 
forecast appeared to be fairly good relative to the 4 Jun 
forecast according to the subjective evaluation.  This 
assessment was consistent with the results from most of 
the new methods that accounted for spatial structure or 
close forecasts.  

While this paper is not focused on model resolution 
or comparing the dynamical cores of different models, 
the results of the subjective evaluation did suggest, at 
first glance, that the wrf2caps and wrf4ncar models 
were more skillful than the wrf4ncep model.  This 
general finding was corroborated by the Procrustes 
approach (Lack et al., 2009), MODE (Davis et al., 2009), 
and others.  Some methods, like cluster analysis, 
variogram, and optical flow, found wrf4ncep to be less 
consistent, but sometimes superior to the other two 
models (Marzban et al., 2009). 

It should be pointed out that the four general 
categories into which we have classified the various 
methods are only used to give a general idea of how a 
method describes forecast performance.  Some 
methods fall only loosely into a specific category (e.g., 
cluster analysis, variograms, FQI).  Further, it is 
conceivable to combine the categories to provide even 
more robust measures of forecast quality.  This has 
been done, for example, in Lack et al. (2009) who apply 
a scale separation method as part of a features-based 
approach.  Results shown here should not only assist a 
user in choosing which methods to use, but might also 
point out potentially useful combinations of approaches 
to method developers and users. 
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region of interest, isolating the potential users’ needs, 
and providing a concrete definition of a good forecast.  
This type of exercise, which would be best done in 
collaboration with social scientists and survey experts, is 
left for future work.  
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