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1. Introduction 
 

Mass et al. (2002), among others, have 
discussed several problems, such as a double penalty, 
that occur with the use of  traditional point-to-point 
verification measures to evaluate precipitation forecasts 
from fine grid spacing models.  To provide more 
informative measures of forecast performance that better 
reflect the quality of finer grid forecasts, several new 
spatial verification techniques have been proposed 
including object-oriented verification.  Object-oriented 
approaches compare the properties of matched forecast 
and observed objects, where the object may be, for 
instance, a precipitation system determined using rainfall 
or reflectivity data.  Object oriented techniques verify the 
location, size, shape, intensity, and other attributes of the 
object, and are therefore very intuitive in their 
interpretation (Ebert and Gallus 2009).  One of the first 
object-oriented approaches developed was the 
Contiguous Rainfall Area (CRA) method (Ebert and 
McBride 2000) which was later used to explore systematic 
model biases in prediction of Central U.S. mesoscale 
convective systems (Grams et al. 2006).  More recently, 
the Method for Object-based Diagnostic Evaluation 
(MODE; Davis et al. 2006a, b), was developed and 
included as part of a community verification system known 
as MET (Model Evaluation Tools; 
http://www.dtcenter.org/met/users).   

These object-oriented approaches have been 
appliled to deterministic forecasts, but as of yet, little work 
has been done to explore how they might best be used 
with ensemble forecasts.  In this paper, both CRA and 
MODE are applied to two different sets of ensembles to 
examine how closely the behavior of the object 
parameters matches results found from traditional 
ensemble spread and skill measures applied to these two 
sets of ensembles.  The first set was used by Clark et al. 
(2008) to compare the temporal evolution of skill and 
spread in an ensemble using mixed physics and mixed 
models along with no perturbation of initial conditions (ICs) 
or lateral boundary conditions (LBCs) with an ensemble 
having fixed physics but perturbed ICs and LBCs.  The 
second set of ensembles, examined by Clark et al. (2009), 
was used to compare skill and spread between a relatively 
coarse grid spacing ensemble with 15 members and a 
finer grid spacing ensemble with only 5 members. 
 
2. Data and Methodology 
 
To examine the use of object-oriented verification methods 
on ensemble 6-hourly accumulated precipitation forecasts, 
two different sets of ensemble forecasts from the Weather 
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Research and Forecasting (WRF; Skamarock et al. 2001) 
model were evaluated.  The first set included an 8 
member 15 km grid spacing ensemble that used 
unperturbed ICs and LBCs with mixed physics and 
dynamic cores (hereafter Phys), and another 8 member 15 
km ensemble using a fixed dynamic core and physics 
package but perturbed ICs and LBCs (hereafter IC/LBC).  
Clark et al. (2008) compared the precipitation forecasts of 
these two ensembles, integrated for 120 hours for 72 
cases, using traditional verification metrics and found that 
the spread and skill of the two ensembles was initially 
comparable but after roughly 24 hours, the lack of 
perturbed LBCs reduced the growth of spread in Phys so 
that better spread and skill were found at later times in the 
IC/LBC ensemble.  In addition, Clark et al. (2008) noted 
that a diurnal signal reflecting heavier nocturnal 
precipitation in the region could be seen in some of the 
traditional verification measures.  In the present study, 
both MODE and CRA were applied to the first 60 hours of 
the forecasts from both ensembles to determine if the 
object parameters identified by both approaches behaved 
in a similar manner to the traditional spread and skill 
measures, and to examine how the diurnal precipitation 
cycle influenced the object parameters.  As in Clark et al. 
(2008), both the WRF forecasted precipitation and Stage 
IV observations used for verification were remapped to a 
10 km grid before being input to CRA and MODE.   
 In both CRA and MODE, a threshold of 6.25 mm 
was used to evaluate the 6 hour precipitation forecasts.   
In CRA, correlation coefficient maximization was used to 
obtain the best fit of the forecast with observations.  The 
object parameters of rain rate, rain area, rain volume, and 
displacement error were analyzed. 

 The second set of ensembles evaluated included 
5 members of a 10 member 4 km grid spacing WRF 
ensemble (hereafter ENS4) run by the Center for the 
Analysis and Prediction of Storms (CAPS; Xue et al. 2007) 
for the 2007 National Oceanic and Atmospheric 
Administration (NOAA) Hazardous Weather Testbed 
Spring Experiment, and 5 members of a 15 member 20 
km grid spacing WRF ensemble (hereafter ENS20) run for 
the same 23 cases (Clark et al. 2009).  All of these 
ensembles were constructed using both mixed physics 
and perturbed ICs and LBCs.  For ENS4, the control 
member (CN) used the 2100 UTC analysis from NCEP’s 
12 km grid spacing North American Model (NAM; Janjic 
2003) for ICs, and the 1800 UTC NAM forecasts for LBCs.  
The other members used perturbations extracted from the 
2100 UTC NCEP SREF WRF-ARW (Advanced Research 
WRF) and WRF-NMM (Nonhydrostatic Mesoscale Model) 
members which were added to the 2100 UTC NAM 
analysis with the corresponding SREF forecasts used for 
LBCs (3-hr updates).  The 5 members analyzed from the 
20 km ensemble were those members having the best 
statistical consistency, as in Clark et al. (2009).   The 
physical parameterizations varied among the ensemble 
members.   
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Clark et al. (2009) found in a comparison of these 

two ensembles using traditional measures that the 
explicitly-resolved convection in ENS4 led to a much 
better representation of the diurnal cycle than in ENS20 
whose members used convective parameterizations.  
Possibly because of the better diurnal signal, ENS4 was 
more skillful than ENS20, even when the 4 km ensemble’s 
5 members were compared to the full 15 members of the 
20 km ensemble.  Spread was also found to increase 
more rapidly with time in ENS4 than in ENS20.  MODE 
was used (again with a threshold of 6.25 mm)  to evaluate 
the rainfall systems in these 33 h forecasts to determine if 
object parameters also reflected the improved forecast of 
the diurnal signal in ENS4, and showed the same 
differences in spread growth.  As in Clark et al. (2009), the 
comparison of the two ensembles was performed on a 20 
km grid that was basically a 2000 x 2000 km subset of the 
coarser ensemble domain. 
 
3. Comparison of the mixed physics ensemble and 
mixed IC/LBC ensemble 
 

Using the first 60 hours of the forecasts from 
Clark et al. (2008), the standard deviations (SDs) within 
the 8 member ensembles for several object parameters 
computed by CRA and MODE were compared.   SDs were 
used as a measure of spread, and data were examined as 
a function of forecast hour from the first 6 hours through 
the 54-60 h forecast.  The standard deviations were 
computed for parameters valid for individual objects 
(systems).  For CRA and MODE, a system had to be 
depicted in at least 4 of the 8 ensemble members to be 
included in the analysis.  A Welch two-sided t-test was 
used within the R statistical package to test for statistical 
significance of differences in the SDs between the two 
ensembles.  No differences identified by MODE were 
statistically significant, but for some parameters in CRA, 
the differences were significant. 

Standard deviations for rain rate show a more 
consistent tendency for increases with time in IC/LBC than 
in Phys (Fig. 1).  In fact, the nearly 11% difference in the 
relative rate of increase (slope normalized by the average 
rain rate in all curves at all times) of a best-fit line between 
the two ensembles in the CRA data is the largest 
difference among the four parameters examined in the 
present study.  An analysis of covariance was performed 
to test for the statistical significance of differences in the 
slopes of the best-fit lines for the two ensembles.  The 
differences in the slopes for the two ensembles were 
stastically significant for both the CRA and MODE results.  
During at least the first five forecast periods, both CRA 
and MODE indicate greater SDs in Phys than in IC/LBC, 
but by the last forecast period, both techniques show a 
larger SD in IC/LBC than in Phys.  Some of these 
differences in the CRA results were statistically significant 
at the 95% confidence level.  This result implies that a 
mixture of different physical schemes is necessary to 
result in more variability in rain rates until enough time has 
passed that differences in LBCs likely affect the 
atmospheric conditions contributing to precipitation 
systems, and hence rain rates, in the IC/LBC members.  

Although not shown, it should be pointed out that 
observed rain rates evidenced a diurnal cycle with maxima 
in the 00-06, 24-36, and 48-60 hour periods, and minima 
during hours 06-18, and 36-48.  The model forecasts (not 
shown) missed the first diurnal peak, possibly evidence of 
spin up problems during the 00-12 h period, but did 
capture the other extrema in the diurnal cycle, albeit with 
less amplitude than that observed (e.g., peak variation in 
Phys of 20.1 mm, and IC/LBC of 18.0 mm compared to 
observed variations of 20.6 mm and 31.5 mm).  The 
diurnal signal is most apparent in the SDs for Phys from 
CRA (Fig. 1), and is stronger in the Phys ensemble than in 
the IC/LBC ensemble using both techniques.   
 

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Time

R
ai

n 
Ra

te
 S

D 
(m

m
)

C-Phys
C-ICLBC
M-Phys
M-ICLBC

*

   .32% C-Phys 
11.04% C-ICLBC 
  -.02% M-Phys 
 4.65% M-ICLBC 

06   12   18   24   30    36   42    48    54    60

 
Figure 1:  Standard deviation of 6-hr rainfall (mm) 

among the 8 ensemble members of Phys (CRA results in 
red, MODE in green) and IC/LBC (CRA orange, MODE 
blue) as a function of forecast hour (time).  Differences in 
CRA results between Phys and IC/LBC statistically 
significant with p values less than .05 shown with 
asterisks. Slope of best-fit line for each set of data, 
expressed as percentage change relative to average rain 
rate SD, is shown in inset (boldfaced when differences 
between Phys and IC/LBC are significant with p < .05).   

 
Standard deviations for rain volume from both CRA 

and MODE do show some diurnal signals in both Phys 
and IC/LBC (Fig. 2).  In addition, the MODE output clearly 
shows a faster rate of growth for SDs in IC/LBC than in 
Phys, and the MODE results are statistically significant.  
Unlike with rain ra , no differences between IC/LBC and 
Phys were statist ally significant.  Clark et al. (2008) 
showed a strong 
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hours with CRA showing relatively constant SDs with time 
while the MODE results depict a decrease.  After the 12-
18 h period, though, both techniques show a general 
increase with time, with the bigger growth in standard 
deviation happening in the IC/LBC ensemble.  Both MODE 
and CRA show a statistically significantly larger growth in 
spread for IC/LBC.  In the CRA results, some of the 
differences between the two ensembles are also 
statistically significant at the later times.  Overall, SDs for 
rain area increase more rapidly with time than for the other 
parameters examined.    It should be noted that the 
observed areas strongly reflected a diurnal cycle with 
maxima/minima at roughly the same times as the peaks in 
rain rate (not shown).  Maximum areal coverage was 2-3 
times that of the minimum coverage.  Similar to rain rate, 
and even moreso rain volume, the amplitude of the cycle 
in the forecasts was greatly damped, especially in the 
IC/LBC ensemble (not shown).  The SDs in Phys depict 
more of a diurnal cycle than those of IC/LBC.   It is 
possible the cycle in IC/LBC is hidden somewhat by the 
faster rate of growth of SDs with time in that ensemble 
than in Phys.   
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Figure 2:  As in Figure 1 except for rain volume (km3). 
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Figure 3:  As in Fig. 1 except for areal coverage (number 
of 10 x 10 km grid boxes) of rainfall. 

 

As with the other parameters, SDs of displacements 
from both techniques (Fig. 4) suggest a faster rate of 
growth for IC/LBC than for Phys, and for the MODE 
results, this difference is significant.  In addition, at most 
times, the SDs are larger in IC/LBC than in Phys.  Perhaps 
most noticeable in Fig. 4 is the large difference in the 
magnitudes of the SDs between the two techniques.  It is 
likely that these large differences in values are due to the 
fact that systems are only matched in CRA when they are 
contiguous, whereas in MODE, systems are matched if 
the interest parameter is greater than some threshold.  
Thus, some systems are matched in MODE even though 
they are not contiguous and may be separated by some 
distance.  Analysis of the first and last 6-h forecast periods 
from the 72 cases for a few of the ensemble members 
suggests that nearly half of the matched objects in MODE 
do not exhibit overlap.  Average displacements for the two 
techniques (not shown) support this theory with CRA 
values generally between 100-150 km, and MODE values 
between 200-250 km at all times. The differences in the 
way the schemes operate should lead to larger average 
displacement errors and standard deviations in MODE 
than in CRA.   In all of the analyses performed in this 
study, false alarm and missed systems are not included in 
the computation of parameters. 
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Figure 4:  As in Fig. 1 except for displacement error (km). 

 
In summary, the trends toward increasing spread with 

time in the IC/LBC ensemble with less increase in the 
Phys ensemble seen in Clark et al (2008) are observable 
in the four object parameters examined, and are especially 
noticeable in both the MODE and CRA results for SDs of 
areal coverage.  This result suggests that spread in areal 
coverage of forecasted precipitation systems is more 
sensitive to whether or not perturbed LBCs are used than 
spread in average rain rates, rain volumes, or 
displacement errors.   For all four parameters, MODE finds 
spread to be greater in Phys at the early times and greater 
in IC/LBC at the later times; CRA only shows this for two 
parameters.  Although the two techniques do not produce 
identical results, they do show the same general trends.  
CRA better shows differences between the two ensembles 

 4.91% C-Phys 
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for the SDs of rain rate, while MODE shows more of a 
difference for SDs of rain volume.   The diurnal cycle with 
precipitation being more abundant during the overnight 
hours has some influence on the SDs of these 
parameters, especially for rain rate, volume, and areal 
coverage. 

 
4. Comparison of 4 km and 20 km grid spacing 
ensembles 

 
To determine whether or not object parameters show 

the trends found in Clark et al. (2009) in a comparison of 
two ensembles using different grid spacing, MODE was 
used on 6 hour accumulation periods covering 00-06, 06-
12, 12-18, 18-00 and 00-06 UTC, or the 3-9, 9-15, 15-21, 
21-27, and 27-33 hour forecast periods, for the cases 
evaluated in that study.  The comparisons used five 
members for each ensemble, with the rainfall input to 
MODE on a 20 km grid.  Because the results discussed in 
section 3 showed that both object-oriented verification 
techniques depicted the same general trends, the CRA 
method was not used on ENS4 and ENS20 output. 

The rain area (for amounts exceeding 6.25 mm) in 
terms of grid boxes (20 x 20 km) averaged for all objects 
identified in all ensemble members and SD of rain area, 
from both ENS4 and ENS20, and the observed rain area 
for each 6 hr period are shown in Fig. 5.  The diurnal 
minimum during the 12-18 UTC period can be seen in the 
observations, with higher values during the 00-12 UTC 
period.  Both ensembles incorrectly show a peak during 
the 18-00 UTC period, and both show an overestimate 
(high bias) at all times.  However, ENS4 has less of a high 
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Figure 5:  Rain area (in 20x20 km grid boxes) 

averaged for all objects in all ensemble members from 
MODE as a function of forecast hour (time) for ENS4 (dark 
blue) and ENS20 (pink), along with the observed value 
(purple) and the standard deviations for ENS4 (orange) 
and ENS20 (cyan).  Slope of best-fit line for SD data, 
expressed as percentage change relative to average rain 
area SD, is shown in inset.   Asterisk at top indicates that 
errors compared to observations for ENS4 were 
statistically significantly less (p <.05) than for ENS20. 
 

 
bias is statistically significantly closer to observations than 
ENS20 during the final forecast period, and does show a 
minimum during the 12-18 UTC period, unlike the 20 km 
ensemble. Both ensembles disagree most with 
observations during the daylight hours (12-00 UTC).   

SDs for the ensembles generally follow the same 
trends as the average rain area, with SDs for ENS20 
larger than those for ENS4.  During the last two periods, 
the rate of growth of spread is slightly larger in ENS4 than 
in ENS20.  Additionally, the slope of the best fit line 
applied to the data from all valid times is slightly greater 
for ENS4 than for ENS20.  This faster growth of spread is 
consistent with Clark et al’s (2009) finding of faster growth 
in ensemble variance in ENS4 compared to ENS20.  
Unlike the Equitable Threat Score (ETS) results discussed 
in Clark et al., the biggest improvements in the 4 km 
depiction of rain area relative to ENS20 occurred during 
the 12-18 and 18-00 UTC periods, and not in the 06-12 
UTC period. 

Average rain rates for the ensembles and 
observations, along with the SDs are shown in Fig. 6.  
Both ensembles tended to predict the rain rate to within 
10% of the observed value, much better agreement than 
found for rain area (Fig. 5).  At all times except for the 
diurnal minimum (12-18 UTC), the two ensembles slightly 
overestimated the rates.  The models correctly depicted 
the times of maxima and minima.  The 4 km results were 
closer to the observed rates during the 00-06 UTC period, 
and then again in the last 12 hours of the simulation.  At all 
times, ENS4 had more spread than ENS20, with a hint of 
faster growth of spread during the last 6-12 hours of the 
forecast.  However, the slopes of the best fit lines for all of 
the data indicated less growth with time than for the SDs 
of rain area, and slightly faster growth in spread for ENS20 
than for ENS4, a result opposite to that for rain area (Fig. 
5) and what was found in Clark et al. (2009).  SDs were no 
more than 25% of the magnitude of rain rates, a much 
smaller fraction than for rain area (Fig. 6) where the SDs 
always exceeded 50% of the magnitudes of the average 
areas. 

*
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For rain volume (Fig. 7), as with rain area, both 
ensembles showed a high bias at all times, with 
particularly large errors during the 12-00 UTC period.  The 
diurnal cycle is apparent in the observations, and ENS4 
does a better job of showing the diurnal cycle, although 
both ensembles are too quick to increase the rain volume 
during the afternoon (18-00 UTC).  The SDs follow the 
same trends as with rain area, with ENS20 having a 
greater SD at all times until the last 6 hours, when ENS4 
may be evidencing the faster error growth discussed in 
Clark et al. (2009).  The slopes of the best fit lines show 
the biggest difference in rate of growth with time for this 
parameter, with ENS4 having a noticeably larger slope.  
Clark et al. also noted that in Hovmoller diagrams 
averaged over the model domain, the ENS20 mean 
computed using probability matching (PM; Ebert 2001) 
appeared to generate the diurnal maximum of day 2 too 
early and too intensely, and this result may be reflected in 
the peak in volume occurring in the ENS20 data between 
18 and 00 UTC (Fig. 7).  Best agreement between both 
ensembles and the observations does occur during the 
06-12 UTC period, in agreement with ETS values for the 
PM means in Clark et al. (2009).  Because errors and SDs 
were relatively small for rain rate (Fig. 6), the larger values 
occurring for rain volume indicate that areal coverage of 
rainfall is a more troublesome forecasting challenge for the 
ensemble members. 

Average displacements and SDs of displacement 
for the two ensembles are shown in Fig. 8.  ENS4 has less 
displacement error at all times.  Both ensembles have 
comparable SDs, roughly 50% of the magnitude of the 
displacements, and unlike the other three parameters 
examined, growth in SDs with time is negligible.  The 
displacement errors do not appear to reflect the diurnal 
cycle.  Displacements in ENS4 were usually in the S or 
SW direction (not shown) through the 27 h forecast (00 
UTC) and then toward the NNE after that time (i.e., mean 
position of forecasted objects usually was SW of the 
observed one prior to hour 27).  For ENS20, there were no 
systematic trends in the displacement direction. 
 

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Time

Ra
in

 V
ol

um
e 

km
^3 ENS4

ENS20
SD-ENS4
SD-ENS20
OBS

 
Figure 7:  As in Fig. 5, except for rain volume in km3. 
 
 

In summary, the object parameters evaluated from 
MODE often supported the conclusions based on 

traditional verification approaches applied to the 4 and 20 
km ensembles.  The object parameters indicated that 
ENS4 better depicted the diurnal cycle, and generally had 
smaller errors at most times for most parameters than 
ENS20.  There was also some evidence of the faster error 
growth found by Clark et al (2009) with SDs growing more 
rapidly in the ENS4 parameters than in the ENS20 ones.  
The analysis of object parameters suggests that average 
rain rate is forecasted better than area, location and 
volume.  Also, variability in rain rate among members is 
less than it is for the other parameters. 
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Figure 8:  As in Fig. 5, except for displacement in km, with 
no observations plotted. 
 
5.  Use of object-oriented verification parameters in 
ensemble forecasting 
 

To investigate how information from object-
oriented techniques might assist forecasters, a series of 
tests were performed.  In one test, the percentage of time 
that the observed rate, volume, and areal coverage fell 
within the spread of the two 8 member ensembles was 
examined during all 6-h forecast periods, which were 
grouped into day 1, 2 and 3 forecasts.  Figure 9 shows 
that this approach worked much better for predicting rain 
rate and volume than for areal coverage.  For rate and 
volume, the two ensembles captured the observed values 
roughly 50% of the time; for areal coverage the figure was 
closer to 10%.  For all three parameters, increasing skill 
with time was more pronounced in IC/LBC than in Phys, a 
result likely influenced by the faster growth in spread in 
IC/LBC (Clark et al. 2008).   

In a second test, output was examined to see if a 
spread-skill relationship where large spread was 
associated with less skillful forecasts existed in the object 
parameters from the ensembles.  Fig. 10 shows the time 
evolution for the Phys ensemble of mean absolute error 
for rain volume, rate, and areal coverage for those 
systems that had large SDs among the members and 
those that had small values.   Large and small were 
defined to be greater than 150% of the average SD or less 
than 50% of the average, respectively.   Rain volume and 
areal coverage show a clear separation with much more 
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accurate forecasts in the events where spread is relatively 
small.  Rain rate does not show the relationship as 
definitively, although for a majority of the time, it still 
applies.  However, at hours 00-06, 18-24, and 48-60, the 
forecast skill either does not vary much with SD or the 
more accurate forecast is associated with larger SDs.   It 
is not entirely clear why rain rate would behave differently, 
although it should be pointed out that the SDs for rain rate 
are a much smaller fraction of the average magnitudes 
than those for the other parameters (not shown).  Average 
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Figure 9:  Percentage of time that observed values of rain 
volume (purple for Phys, brown for IC/LBC), rate (orange 
for Phys, cyan for IC/LBC), and areal coverage (blue for 
Phys, pink for IC/LBC) fell within the minimum and 
maximum predicted by the two ensembles, based on CRA 
output.  Day 1 refers to 6h forecast periods in the first 18 
hours of the forecast, day 2 refers to those in the 18-42 h 
period, and day 3 those in the 42-60 h period. 
 
rain rates at all times for both ensembles are around 12 
mm, so that the SDs (Fig. 1) are roughly 10% of the 
average values.  Rain volumes are typically around 1 km3 

(not shown), so that SDs (Fig. 2) are often over 50% of 
these values.   Likewise, SDs for areal coverage (Fig. 3) 
and displacement (Fig. 4) are often 50% or more of the 
typical values (not shown) of around 700 (MODE) – 800 
(CRA) points and 100 km (CRA) - 200 km (MODE).  
These results in general imply that forecasters may be 
able to establish a confidence level for their forecasts of 
some object parameters using the SDs from ensembles.  
The same general tendencies were found for IC/LBC (not 
shown), with clearly better forecasts of rain volume and 
areal coverage when spread was small, but mixed results 
for rain rate.  

Finally, a third test was performed to investigate if the 
average of a parameter value from the set of ensemble 
members would be a better forecast than the parameter 
value from the Probability Matched (PM) ensemble mean 
(Ebert 2001).  Probability matching is a technique that 
looks at the full distribution of forecast values from any 
ensemble of n members, and then assigns every nth value 
to the simple ensemble mean.  The PM approach 
generally reduces the usual problem of high biases for 
light amounts that occurs when a simple mean is taken for 
ensemble forecasts of parameters like precipitation.   

For the 8 member ensembles, the PM approach 
resulted in similar skill to the approach of applying CRA to 
each member and then averaging the output for object 
parameters (results not shown).   For ENS4 and ENS20, 
however, MODE results showed that for some parameters 

 

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Time

rate+
rate-
volume+
volume-
area+
area-

06   12    18    24    30    36     42    48    54    60

 
Figure 10:  Mean absolute error for volume (km3), rate 

(*2.54 mm) and areal coverage (*1000 grid boxes) of  
precipitation from CRA applied to Phys as a function of 
time for cases with standard deviations over 150% of the 
mean (squares with solid line for rate, dashed line for 
volume, and dotted line for area), and less than 50% of the 
mean (triangles with solid line for rate, dashed line for 
volume, and dotted line for area).   
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the PM approach might work better, and for others, the 
averaging of MODE output from each member would be 
better.  In Fig. 11, the results for displacement can be 
seen.  For ENS20, the PM ensemble mean precipitation 
field always yields a smaller displacement error than the 
average of the ensemble members.   For ENS4, the 
probability matched ensemble mean value is better in the 
first 4 evaluation periods, but shows much faster error 
growth over time, so that the average of the individual 
members’ displacements becomes a better forecast during 
the final 6 hour period.   Such a trend is not as apparent in 
the 20 km ensemble output.   

Different behavior is noted for the rain areas (Fig. 12) 
and rates and volumes (not shown).  For both ensembles, 
the forecasted rain areas are much closer to the observed 
values when the average of the areas from the individual 
ensemble members are used compared to the areas 
determined from the PM ensemble mean.  For the 4km 
results, the differences are statistically significant at almost 
all times; for the 20km results, p values are less than .05 
only at the 6-12 h period, but are less than .10 (not shown) 
during periods 12-18 and 24-30 as well.  As was the case 
with Phys and IC/LBC, the areas in the PM mean forecast 
were larger than the average areas from the ensemble 
members.  Because the ENS4 and ENS20 forecasts had a 
more persistent problem with overestimates of rainfall 
coverage, the PM forecasts of area were always worse 
than those obtained from averages of the individual 
ensemble members.  The temporal trends in the average 
values of area still differ substantially from the observed 
diurnal cycle but do appear to be slightly more realistic 
than the trends associated with the PM forecast. 
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Figure 12:  As in Fig. 11 except for rain area (20 x 20 km 
grid boxes) with observations also shown (dashed line).  
Asterisks at top indicate times when PM approach at 20 
km was statistically significantly worse (p < .05) compared 
to observations than ENS20 approach; asterisks at bottom 
indicate the same but for 4 km results. 
  
6. Summary and Conclusions 
 

The use of object-oriented verification 
approaches to evaluate and enhance ensemble forecasts 
was tested by using both CRA and MODE on two sets of 
ensembles.  The first set included an 8 member ensemble 

with mixed physics and dynamic cores with unperturbed 
ICs and LBCs (Phys) and an 8 member ensemble with 
fixed physics and perturbed ICs and LBCs (IC/LBC).  
Clark et al. (2008) found using traditional spread and skill 
measures that spread increased much faster in IC/LBC 
compared to Phys so that both spread and skill were 
better in IC/LBC than in Phys after roughly 24-30 hours.  
The second set of ensembles included 5 members of a 4 
km ensemble (ENS4) and 5 members of a 20 km 
ensemble (ENS20).  Clark et al. (2009) found that a 
diurnal signal in precipitation was better depicted in ENS4, 
and this may have partly accounted for better skill 
measures for ENS4 compared to ENS20.  In addition, 
spread grew faster with time in ENS4.  

Both CRA and MODE showed that in four object 
parameters studied, rain rate, volume, areal coverage and 
displacement error, greater increases in spread with time 
occur in IC/LBC than in Phys, agreeing with Clark et al. 
(2008).  This trend was particularly noticeable in areal 
coverage of precipitation systems, suggesting that spread 
in areal coverage of forecasted precipitation systems is 
more sensitive to whether or not perturbed lateral 
boundary conditions are used than spread in average rain 
rates, rain volumes, or displacement errors.   Although the 
two object-oriented techniques do not produce identical 
results, they do show the same general trends.  The 
diurnal cycle with precipitation being more abundant 
during the overnight hours has some influence on the SDs 
of the object parameters examined, especially rain rate, 
volume, and areal coverage.   

In a comparison of object parameters derived from 
MODE for ENS4 and ENS20, ENS4 was found to better 
depict the diurnal cycle, and generally had smaller errors 
at most times for most parameters than ENS20.  There 
was also some evidence of the faster error growth found 
by Clark et al (2009) with standard deviations growing 
more rapidly in the ENS4 parameters than in the ENS20 
ones.  Standard deviations were much smaller for rain rate 
than for other parameters, and agreement with 
observations was also best for rain rate.   

*

Several tests were performed also to examine 
methods of using object-oriented verification output to 
assist forecasters.  It was found that predictions of areal 
coverage of precipitation systems are more accurate when 
based on the average of the predicted areas from each 
ensemble member as opposed to using a PM ensemble 
mean forecast input into the object-oriented techniques.  
For the other parameters, rain rate, volume, and 
displacement, differences in the skill of both approaches 
were less substantial.   

* * * *
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